Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include "cmdline.h"
#include "gcdexcl.h"
#include "gcdmodel.h"
using namespace std;
namespace pictcli_gcd
{
//
// when constraints are too strict and entire parameters get excluded from
// generation, the process can't continue
//
bool CGcdData::CheckEntireParameterExcluded()
{
// key is a parameter, parameter has a set of values
map< Parameter*, set< int > > paramMap;
set< int > emptySet;
// walk through all exclusions, pick one-element ones, and add them to the map
for( auto & exclusion : Exclusions )
{
if( 1 == exclusion.size() )
{
ExclusionTerm& term = const_cast<ExclusionTerm&> ( *( exclusion.begin() ) );
auto result = paramMap.insert( make_pair( term.first, emptySet ) );
set< int >& values = ( result.first )->second;
values.insert( term.second );
}
}
// if any of the params in the map contains all elements then the entire parameter is excluded
for( auto & parameter : paramMap )
{
if( ( parameter.first )->GetValueCount() == static_cast<int> ( parameter.second.size() ))
{
auto found = _modelData.FindParameterByGcdPointer( parameter.first );
assert( found != _modelData.Parameters.end() );
wstring param = L"'" + found->Name + L"'";
PrintMessage( InputDataError, L"Too restrictive constraints. All values of parameter",
param.c_str(), L"got excluded." );
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
return( true );
}
}
return( false );
}
//
//
//
wstrings CGcdData::GetSingleItemExclusions()
{
wstrings collection;
for( auto & exclusion : Exclusions )
{
if( 1 == exclusion.size() )
{
ExclusionTerm& term = const_cast<ExclusionTerm&> ( * exclusion.begin() );
auto found = _modelData.FindParameterByGcdPointer( term.first );
assert( found != _modelData.Parameters.end() );
wstring text = found->Name;
text += L": ";
text += found->Values.at( term.second ).GetPrimaryName();
collection.push_back( text );
}
}
return collection;
}
//
//
//
bool CGcdData::FixParamOrder( IN Model* submodel )
{
// clean order assignments for non-result params, set order of result params to 1
for( auto & param : _modelData.Parameters )
{
if( param.IsResultParameter )
{
param.GcdPointer->SetOrder( 1 );
}
else
{
param.GcdPointer->SetOrder( UNDEFINED_ORDER );
}
}
// If this is an actual submodel (a model other than the root), by now it will have its
// order defined so use it across all its parameters
if( submodel != _task.GetRootModel() )
{
for( auto & param : submodel->GetParameters() )
{
if( UNDEFINED_ORDER == param->GetOrder() )
{
param->SetOrder( submodel->GetOrder() );
}
}
}
// For the root model, use orders specified in parameter definitions or if none was
// defined, use the default order of the model
else
{
// order from param definitions
for( auto & param : submodel->GetParameters() )
{
if( UNDEFINED_ORDER == param->GetOrder() )
{
auto p = _modelData.FindParameterByGcdPointer( param );
assert( p != _modelData.Parameters.end() );
if( p->Order != UNDEFINED_ORDER )
{
// TODO: add verification of Order
// if p->Order > model->parameters.count - model.ResultParameters.count then error out
param->SetOrder( p->Order );
}
else
{
param->SetOrder( submodel->GetOrder() );
}
}
}
}
return( true );
}
//
//
//
typedef map< CModelParameter*, Parameter* > CParamMap;
//
// the main proc translating the model gathered from the UI to one used by the engine
//
ErrorCode CGcdData::TranslateToGCD()
{
Model* rootModel = new Model( L"", GenerationType::MixedOrder, _modelData.Order, _modelData.RandSeed );
Models.push_back( rootModel );
_task.SetRootModel( rootModel );
_task.SetGenerationMode( _modelData.GenerationMode );
if( _modelData.GenerationMode == GenerationMode::Approximate )
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
{
_task.SetMaxRandomTries( _modelData.MaxApproxTries );
}
// first resolve all submodels:
// each submodel will be a new model linked to a root model
// all parameters not assigned to any submodel will be linked to the root
// create a map of all parameter iterators, this will guide the rest of the translation
CParamMap paramMap;
for( size_t index = 0; index < _modelData.Parameters.size(); ++index )
{
CModelParameter& param = _modelData.Parameters[ index ];
Parameter* gcdParam = new Parameter( UNDEFINED_ORDER, index, static_cast<int>( param.Values.size() ),
param.Name, param.IsResultParameter );
// find out and assign weights to values
// we don't have to care for the clean-up of the structure, Parameter's destructor will clean it
vector< int > weightVector;
for( auto & value : param.Values )
{
weightVector.push_back( value.GetWeight() );
}
gcdParam->SetWeights( weightVector );
// store the structure, update its back pointer and
Parameters.push_back( gcdParam );
param.GcdPointer = gcdParam;
// store the pointer in a safe place for later
paramMap.insert( make_pair( ¶m, gcdParam ) );
}
// we will store all params assigned to submodels here
set<Parameter*> usedInSubmodels;
// now go through all the submodels and wire up parameters to models
for( auto & submodel : _modelData.Submodels )
{
Model* gcdModel = new Model( L"", GenerationType::MixedOrder, submodel.Order, _modelData.RandSeed );
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
Models.push_back( gcdModel );
for( auto & idx_param : submodel.Parameters )
{
// idx_param is an index of a parameter in ModelData.Parameters collection
// to find a submodel in a guiding map let's locate that parameter and get an iterator
vector< CModelParameter >::iterator i_param = _modelData.Parameters.begin() + idx_param;
CParamMap::iterator found = paramMap.find( &(*i_param) );
assert( found != paramMap.end() );
// insert
gcdModel->AddParameter( found->second );
usedInSubmodels.insert( found->second );
}
}
// wire up all submodels to a root model
for( auto & model : Models )
{
if( rootModel != model )
{
rootModel->AddSubmodel( model );
}
}
// for outstanding parameters we have two options:
// 1. if any submodels were explicitly defined by a user we should create a submodel for each
// outstanding parameter; all such submodels should be uplinked to the root
// 2. if no submodels were defined we just put params directly to the root
if( usedInSubmodels.size() != paramMap.size() )
{
if( _modelData.Submodels.size() > 0 )
{
for( auto & iparam : paramMap )
{
if( usedInSubmodels.find( iparam.second ) != usedInSubmodels.end() )
{
continue;
}
Model* subModel = new Model( L"", GenerationType::MixedOrder, 1, _modelData.RandSeed );
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
Models.push_back( subModel );
rootModel->AddSubmodel( subModel );
subModel->AddParameter( iparam.second );
}
}
else
{
for( auto & iparam : paramMap )
{
rootModel->AddParameter( iparam.second );
}
}
}
// add seeding rows
for( auto & seed : _modelData.RowSeeds )
{
RowSeed rowSeed;
for( auto & item : seed )
{
// find a pointer to Parameter and ordinal number of the value
vector<CModelParameter>::iterator param = _modelData.FindParameterByName( item.first );
assert( param != _modelData.Parameters.end() );
int nVal = param->GetValueOrdinal( item.second, _modelData.CaseSensitive );
if( nVal >= 0 )
{
rowSeed.insert( make_pair( param->GcdPointer, nVal ) );
}
}
_task.AddRowSeed( rowSeed );
}
// make sure all order fields in models are set appropriately
if( !fixModelAndSubmodelOrder() )
{
}
// add exclusions for negative values
addExclusionsForNegativeRun();
// add user-specified exclusions now
// parse the constraints and make exclusions out of them
ConstraintsInterpreter interpreter( _modelData, Parameters );
if( !interpreter.ConvertToExclusions( Exclusions ) )
{
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
}
_constraintWarnings.assign( interpreter.GetWarnings().begin(), interpreter.GetWarnings().end() );
if( _modelData.Verbose )
{
PrintLogHeader( L"Initial set of exclusions" );
PrintGcdExclusions();
}
// add each exclusion to that model in the hierarchy which is the most suitable:
// 1. a subtree of that model must have all the parameters of the exclusion
// 2. no lower subtree satisfies the condition 1)
for( auto & excl : Exclusions )
{
_task.AddExclusion( const_cast<Exclusion&> ( excl ) );
}
_task.PrepareForGeneration();
// at this point we don't need gcdData.Exclusions anymore
Exclusions.clear();
__insert( Exclusions, _task.GetExclusions().begin(), _task.GetExclusions().end() );
if( _modelData.Verbose )
{
PrintLogHeader( L"After derivation" );
PrintGcdExclusions();
}
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
}
//
//
//
void CGcdData::PrintGcdExclusions()
{
for( auto & exclusion : Exclusions )
{
for( auto & term : exclusion )
{
size_t paramIdx;
for( paramIdx = 0; paramIdx < Parameters.size(); ++paramIdx )
{
Parameter* param = Parameters[ paramIdx ];
if( param == term.first ) break;
}
CModelParameter& pp = _modelData.Parameters[ paramIdx ];
CModelValue& vv = pp.Values[ term.second ];
wcerr << L"( " << pp.Name << L": " << vv.GetPrimaryName() << L" ) ";
}
wcerr << endl;
}
wcerr << L"Count: " << (unsigned int) Exclusions.size() << endl;
}
//
//
//
void CResult::PrintOutput( CModelData& modelData, wostream& wout )
{
wstring encodingPrefix;
setEncodingType( modelData.GetEncoding(), encodingPrefix );
wout << encodingPrefix;
for( vector< CModelParameter >::iterator i_param = modelData.Parameters.begin();
i_param != modelData.Parameters.end();
i_param++ )
{
if( i_param != modelData.Parameters.begin() ) wout << RESULT_DELIMITER;
wout << i_param->Name;
for( vector< CRow >::iterator i_row = TestCases.begin();
i_row != TestCases.end();
i_row++ )
{
for( wstrings::iterator i_value = i_row->DecoratedValues.begin();
i_value != i_row->DecoratedValues.end();
i_value++ )
{
if( i_value != i_row->DecoratedValues.begin() )
{
wout << RESULT_DELIMITER;
}
}
//
//
//
void CResult::PrintConstraintWarnings()
{
if( SingleItemExclusions.size() > 0 )
{
wstring text = L"Restrictive constraints. Output will not contain following values: ";
for( auto item : SingleItemExclusions )
{
text += L"\n " + item;
}
PrintMessage( ConstraintsWarning, text.c_str() );
}
for( auto & warn : SolverWarnings )
{
PrintMessage( ConstraintsWarning, warn.c_str() );
}
}
//
//
//
void CResult::PrintStatistics()
{
PrintStatisticsCaption( wstring( L"Generated tests" ) );
wcout << static_cast<int> ( TestCases.size() ) << endl;
}
//
// Figure out order for all model elements with UNDEFINED_ORDER or for
// root model with MAXIMUM_ORDER.
//
bool CGcdData::fixModelAndSubmodelOrder()
{
if( _modelData.Order < 1
&& _modelData.Order != UNDEFINED_ORDER )
{
PrintMessage( InputDataError, L"Order cannot be smaller than 1" );
return( false );
}
Model* rootModel = _task.GetRootModel();
// If the order given as an argument to the program has not been
// explicitly defined it defaults to 2; if it's been provided but
// given the "max" value, it defaults to MAXIMUM_ORDER. In both
// cases, the order value must be recomputed and set to the real
// maximum to avoid failing the later sanity checks.
size_t inputParamCount = _modelData.TotalParameterCount() - _modelData.ResultParameterCount();
if( _modelData.ProvidedArguments.find( SWITCH_ORDER ) == _modelData.ProvidedArguments.end()
or _modelData.Order == MAXIMUM_ORDER )
// if submodels were defined, don't need any params, otherwise order = params without submodels
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
if( _modelData.Submodels.size() > 0 )
{
if( _modelData.Order > static_cast<int>( rootModel->GetSubmodelCount() ) )
{
_modelData.Order = rootModel->GetSubmodelCount();
}
}
else
{
if( inputParamCount > 0 && _modelData.Order > static_cast<int>( inputParamCount ) )
{
_modelData.Order = static_cast<int>( inputParamCount );
}
}
rootModel->SetOrder( _modelData.Order );
}
// now perform standard check on the order
if( _modelData.Submodels.size() > 0 )
{
// order of combinations provided to the tool cannot be bigger than number of submodels
if( _modelData.Order > static_cast<int>( rootModel->GetSubmodelCount() ) )
{
PrintMessage( InputDataError, L"Order cannot be larger than total number of submodels and oustanding parameters" );
return( false );
}
}
else
{
// check that the order is at most the number of params
if( _modelData.Order > (int) inputParamCount )
{
PrintMessage( InputDataError, L"Order cannot be larger than number of parameters" );
return( false );
}
}
// now that we have the model order calculated, fix all submodels in which order is still UNDEFINED
for( auto & model : Models )
{
if( model != rootModel && UNDEFINED_ORDER == model->GetOrder() )
{
model->SetOrder( min( (int) model->GetParameters().size(), _modelData.Order ) );
}
}
// perform checks on the submodels
for( auto & model : Models )
{
if( model->GetOrder() < 1 )
{
PrintMessage( InputDataError, L"Order of a submodel should be at least 1" );
return( false );
}
// only for models that do not contain other models
if( 0 == model->GetSubmodelCount() )
{
if( model->GetOrder() > (int) ( model->GetParameters().size() ) )
{
PrintMessage( InputDataError, L"Order of a submodel cannot be larger than number of involved parameters" );
return( false );
}
}
}
return( true );
}
//
// negative runs are accomplished by adding synthetic exclusions such that
// no two negative values can co-exist in one test case
//
void CGcdData::addExclusionsForNegativeRun()
{
for( size_t param1Idx = 0; param1Idx < _modelData.Parameters.size(); ++param1Idx )
{
CModelParameter& param1 = _modelData.Parameters[ param1Idx ];
for( size_t val1Idx = 0; val1Idx < param1.Values.size(); ++val1Idx )
{
CModelValue& val1 = param1.Values[ val1Idx ];
if( !val1.IsPositive() )
{
for( size_t param2Idx = param1Idx + 1; param2Idx < _modelData.Parameters.size(); ++param2Idx )
{
CModelParameter& param2 = _modelData.Parameters[ param2Idx ];
for( size_t val2Idx = 0; val2Idx < param2.Values.size(); ++val2Idx )
{
CModelValue& val2 = param2.Values[ val2Idx ];
if( !val2.IsPositive() )
{
Exclusion excl;
excl.insert( make_pair( Parameters[ param1Idx ], (int) val1Idx ) );
excl.insert( make_pair( Parameters[ param2Idx ], (int) val2Idx ) );
Exclusions.insert( excl );
}
}
}
}
}
}
}