Computation of the five-bar mechanism models

Damien SIX
August 3, 2021

1 Introduction

This document details the equations of the kinematic and dynamic models of a
five-bar mechanism. This recall of the AMORO course is provided to help the

students in performing the AMORO lab.
The kinematic architecture of the five-bar mechanism is shown in Fig.1. In

the context of the AMORO lab, the geometric parameters are:
e Bar length (all bars are equal length): I = 0.09 m

e Distance between the two active joints: d = da,,4,, = 0.118 m

Figure 1: Kinematic architecture of the five-bar mechanism. Joints located at
A1l and A21 are actuated.



2 Geometric models

2.1 Direct geometric model

A (x,y)

Figure 2: Kinematic architecture of the five-bar mechanism

The direct geometric model gives the position of the end-effector (x,y) as a
function of the active joints coordinates (g1, ¢21) and the assembly mode.
Using Figure 2, the direct geometric model can be computed according to

the following method. First, the vector Ao H is computed.
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There are two solutions for the point Aj3, relative to the two assembly mode
of the robot. They are obtained by the 90° rotation (clockwise and counter-

clockwise) of the vector Aggﬁ scaled to the length h (see 2), giving
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with @ = da,, g and h = V12 — a2.
v takes two values, +1 and -1, depending of the direction of assembly mode.
Each value of v correspond to one assembly mode.

The position of the end-effector is then given by

OAj3 =0Ay + Ay Agy + AgoH + HAy3 (3)



2.2 Passive joints geometric model

The computation of the passive joint coordinate g2 can be done using the
expression of the end-effector position as a function of all the left arm joints.
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Leading to
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Similarly, the expression of the passive joint coordinate gq9 is obtained with
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2.3 Inverse geometric model

To compute the inverse geometric model for the left arm, we need the position
of the point A15. We can compute this position, using an additional point Mj,
the mid point of the segment [A11A;13]

A1 A =AMy + M A (7)

with A11M1 = %A11A13 and
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with ¢ = da,, 0, and b= /12 — 2. 1 can take two values +1 or -1 depending
on the working mode of the arm. The position of the point Ays is now expressed
as a function of the end-effector position. The angle of the active joint ¢1; is
then given by

qi11 = atan2(yz412 T YA LA, T xAu) (9)

The inverse geometric model of the right arm is computed in a similar manner.

3 First order kinematic models

3.1 Forward and inverse kinematic model

To compute the first order kinematic model, we start with the computation of
the position of the end-effector using two vector equations, one for each leg.
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where
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e uy; is the unit vector along A1 A1
—

e u; is the unit vector along A15A;3
. . -

e Uy is the unit vector along Asy Agg

_—
® Uy is the unit vector along Ao Aq3

Recall: In 2D, the first derivative of a unit rotating vector u with an angular
velocity ¢ is u = ¢v where v is a vector rotated 90° counter-clockwise of u.
Indeed, the derivative of v is then —qu.
The first derivative of (10) is given by

; = lguvi + (g1 + qi2)vie (11)

€ = lgo1var + (21 + G22)vae

We have here 4 equations (each line contains two equations) to express the the
end-effector velocity. However, we don’t know the value of the passive joint
velocities ¢12 and ¢12. As explained in the course, the objective is to find a
vector, which, using its dot product with the kinematic equations of the legs,
will cancel the terms containing the passive joint velocities. We let you refer to
the course content for the methodology to find such vector. Here, the solution
is obviously obtained by applying the dot product of the first line of equation
(11) with w2 and the second line with ugs, as they will cancel respectively via
and vos. Then, we obtain

u2.§ = lgi1u12.V1y
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or, as a matrix expression
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where q = Bn} This kinematic model is under the form Aé = Bq. The forward
21

and inverse kinematic model are obtained by inverting either A or B. Indeed,
singularities have to be taken into account in those computations (seen in the
course). In equation (13), the singularities can be easily expressed as geometric
conditions. We let the reader describe those conditions and ask nicely their
professor if they don’t find out.

3.2 Passive joints kinematic model

As we already obtained the velocity of the end-effector as a function of the
active joint velocity, it would be easy, using (11) to compute the passive joint
velocities. However, we have 4 equations to express two passive joint velocities.
And some of them cancel the term of the passive joint velocities depending on
the orientation of the vectors vis and vos. A wise approach is again to make



and appropriate dot product that will avoid this issue. The solution is obviously
obtained by applying the dot product of the first line of equation (11) with vio
and the second line with vos, leading to:
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Or, under the matrix form
T
Vio| & lV12.V11 +1 0 . .
|:V2T2:| &= [ 0 Ivasvar +1] 9 +lay (15)

where @, = Bu] is the vector of the passive joint velocities. We can see that
22

the expression of the passive joint as a function of the end-effector velocity and
the active joint velocities is not affected by singularities on this robot.

4 Second order kinematic models

4.1 Forward and inverse kinematic model

To compute the second order kinematic model, we use the derivative of equation

(11).
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Again, we can apply the dot product of the first line of equation (16) with uys

and the second line with us2, as they will cancel respectively vis and vas. Then,

we obtain

u12~é = lg1iui2.vi1 — lfﬁluullu - 1(411 + 6]12)2 (17)

1122-5 = lgo1ug2.v21 — lt}§1U2z-uQ1 - 1(421 + Q22)2

or, as a matrix expression
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Th.is second order kinematic model is under the form
A =Bqg+d.

4.2 Passive joints kinematic model

The solution for the passive joint second order kinematic model is obtained in
a manner similar to the first order kinematic model. We apply the dot product
of the first line of equation (16) with vi2 and the second line with vag, leading
to: .
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5 Dynamic model

For the dynamic model of the five-bar mechanism in the context of this lab,
only the following base dynamic parameters are considered.

e 7 7Z1R the grouped inertia on the first link of the left arm.
771 r=0.002 kg.m?

e 7 ZsR, the grouped inertia on the first link of the right arm.
Z Z51r=0.002 kg.m?

e mp the grouped mass on the end-effector. mp = 0.5 kg

The dynamic model of the five-bar mechanism is obtained by computing first
the dynamic model of the tree structure without the platform. The Lagrangian
of the tree structure is given by

1 . 1 .
L= 5ZZqufl + 5ZZQng1 (21)

Applying the Lagrange equations to (21) gives

[ZZin 0 7.

In a second time, we compute the dynamic model of the free moving platform.
The Lagrangian of the free-moving platform is given by

1
L, =5 +i*)m (23)

Applying the Lagrange equations to (23) gives
w, = mé (24)

Finally, we can relate the two models (22) and (24) using the Lagrange equations
with multipliers (see course) with the kinematic model (13)

T=7+J3"w, (25)

where J = A7'B. We let the reader develop this expression using the previous
dynamic models and the kinematic equations to obtain the expression of the
dynamic model as a function of the active joint acceleration under the form.

T=Mqg+c (26)



