
AMORO Lab - Part 1: Introduction

Damien SIX
damien.six@ls2n.fr

Released: August 18, 2021

1 Objectives of the lab

The purpose of this lab is to perform the simulation of two parallel robots
using ROS2 and GAZEBO. For each robot, you will compute the kinematic and
dynamic models and compare them to the simulator output. Then, you will
develop a computed torque control for the simulator.

Two robots will be simulated: a five-bar mechanism and a biglide mecha-
nism. For the five-bar, the models are already available in your course and a
reminder is provided with the content of this lab. For the biglide, in addition to
the simulation, you have to perform and report the computation of the several
models.

All the reports for this lab have to be done using LATEX. Templates
are provided in the lab content. If you have no knowledge of what is LATEX,
please refer to the the official documentation, the documents provided and your
lab supervisor.

There is no lab report on the first part of the lab (five-bar mechanism).
However, your work on the second mechanism (biglide) have to be fully reported.

2 Gazebo and ROS2

The simulation for this lab is performed by Gazebo. ROS2 topics are used to
communicate with the simulation, providing torque inputs and getting measures
(joints, end effector) from the simulation.

For the purpose of this lab, ROS2 and communication with Gazebo is hidden
via a Python class Robot. In the scripts you will write, you can interact with
the robot using

• robot.start oscillate() to perform some oscillations on the robot joint (use-
full to test models without predefined trajectory). You can also stop
oscillations using robot.stop oscillate().

• robot.active left joint.position to access the position of the left active joint
of the robot. Similarly, you can access any joint (passive/active, left/right)
and several data (position/velocity/acceleration/effort).

• You can also access the end effector data using robot.end effector.position x
for the x coordinate of the end effector. You can also access the y coordi-
nate and velocity/acceleration data.

1

https://www.latex-project.org/about/
http://gazebosim.org/
https://docs.ros.org/en/foxy/index.html


Figure 1: ROS2 nodes for the robot simulation

• You can set some joint efforts using robot.apply efforts(left joint,
right joint). Indeed, the robot should not be in oscillate mode for this
to work properly.

• robot.get time() to get the current simulation time. Useful to plot curves.

The simulation is performed in a way that Gazebo is driven by the Robot
class. Each time you send a torque input, the simulation will perform a 10 ms
simulation then send you back the results. The normal way to control the
simulation is

• Send a torque input using robot.apply efforts() or
robot.continue oscillations() in oscillation mode.

• Wait for the results of Gazebo simulation. This is checked using
robot.data updated().

• Do whatever you need to do.

• Send a new torque input.

• Loop as long as you need.

Scripts are already pre-filled to help you with this part.

3 Prepare for the lab

To prepare the lab, the following steps must be performed.

• Switch to ros2 by typing ros2ws.

• Create a ros2 folder and a src sub-folder in it.

• Clone the lab folder into the ros2/src folder using the command
$ git clone https://gitlab.univ-nantes.fr/six-d-1/lab amoro

• Compile and install everything using the command colbuild.

2



• Test the correct installation using ros2 launch lab amoro gazebo.launch.py
If Gazebo is launched after typing this command, you are ready to go.

When you open a new terminal, you must always type the command ros2ws to
work under ros2 (otherwise it is ros1 by default).

3


	Objectives of the lab
	Gazebo and ROS2
	Prepare for the lab

