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1 Introduction

This document details the equations of the kinematic and dynamic models of a
five-bar mechanism. This recall of the AMORO course is provided to help the
students in performing the AMORO lab.

The kinematic architecture of the five-bar mechanism is shown in Fig.1. In
the context of the AMORO lab, the geometric parameters are:

• Bar length (all bars are equal length): l = 0.09 m

• Distance between the two active joints: d = dA11A21
= 0.118 m
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Figure 1: Kinematic architecture of the five-bar mechanism. Joints located at
A11 and A21 are actuated.
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2 Geometric models

2.1 Direct geometric model
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Figure 2: Kinematic architecture of the five-bar mechanism

The direct geometric model gives the position of the end-effector (x, y) as a
function of the active joints coordinates (q11, q21) and the assembly mode.

Using Figure 2, the direct geometric model can be computed according to

the following method. First, the vector
−−−→
A22H is computed.

−−−→
A22H =

1

2

−−−−→
A22A12

=
1

2
(−
−−−−→
A21A22 +

−−−−→
A21A11 +

−−−−→
A11A12)

=
1

2

[
−l cos q21 − d+ l cos q11
−l sin q21 + l sin q11

] (1)

There are two solutions for the point A13, relative to the two assembly mode
of the robot. They are obtained by the 90° rotation (clockwise and counter-

clockwise) of the vector
−−−→
A22H scaled to the length h (see 2), giving

−−−→
HA13 = γ

h

a

[
0 −1
1 0

]
−−−→
A22H (2)

with a = dA22H and h =
√
l2 − a2.

γ takes two values, +1 and -1, depending of the direction of assembly mode.
Each value of γ correspond to one assembly mode.

The position of the end-effector is then given by

−−−→
OA13 =

−−−→
OA21 +

−−−−→
A21A22 +

−−−→
A22H +

−−−→
HA13 (3)
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2.2 Passive joints geometric model

The computation of the passive joint coordinate q12 can be done using the
expression of the end-effector position as a function of all the left arm joints.[

x
y

]
=

[
−d

2 + l cos q11 + l cos (q11 + q12)
l sin q11 + l sin (q11 + q12)

]
(4)

Leading to

q12 = atan2

(
y

l
− sin q11,

x

l
+
d

2l
− cos q11

)
− q11 (5)

Similarly, the expression of the passive joint coordinate q22 is obtained with

q22 = atan2

(
y

l
− sin q21,

x

l
− d

2l
− cos q21

)
− q21 (6)

2.3 Inverse geometric model

To compute the inverse geometric model for the left arm, we need the position
of the point A12. We can compute this position, using an additional point M1,
the mid point of the segment [A11A13]

−−−−→
A11A12 =

−−−−→
A11M1 +

−−−−→
M1A12 (7)

with
−−−−→
A11M1 = 1

2

−−−−→
A11A13 and

−−−−→
M1A12 = γ1

b

c

[
0 −1
1 0

]
−−−−→
A11M1 (8)

with c = dA11M1 and b =
√
l2 − c2. γ1 can take two values +1 or -1 depending

on the working mode of the arm. The position of the point A12 is now expressed
as a function of the end-effector position. The angle of the active joint q11 is
then given by

q11 = atan2(yA12 − yA11 , xA12 − xA11) (9)

The inverse geometric model of the right arm is computed in a similar manner.

3 First order kinematic models

3.1 Forward and inverse kinematic model

To compute the first order kinematic model, we start with the computation of
the position of the end-effector using two vector equations, one for each leg.

ξ = −d
2
x0 + lu11 + lu12

ξ =
d

2
x0 + lu21 + lu22

(10)

where
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• ξ =

[
x
y

]
• u11 is the unit vector along

−−−−→
A11A12

• u12 is the unit vector along
−−−−→
A12A13

• u21 is the unit vector along
−−−−→
A21A22

• u22 is the unit vector along
−−−−→
A22A13

Recall: In 2D, the first derivative of a unit rotating vector u with an angular
velocity q̇ is u̇ = q̇v where v is a vector rotated 90° counter-clockwise of u.
Indeed, the derivative of v is then −q̇u.
The first derivative of (10) is given by

ξ̇ = lq̇11v11 + l(q̇11 + q̇12)v12

ξ̇ = lq̇21v21 + l(q̇21 + q̇22)v22

(11)

We have here 4 equations (each line contains two equations) to express the the
end-effector velocity. However, we don’t know the value of the passive joint
velocities q̇12 and q̇12. As explained in the course, the objective is to find a
vector, which, using its dot product with the kinematic equations of the legs,
will cancel the terms containing the passive joint velocities. We let you refer to
the course content for the methodology to find such vector. Here, the solution
is obviously obtained by applying the dot product of the first line of equation
(11) with u12 and the second line with u22, as they will cancel respectively v12

and v22. Then, we obtain

u12.ξ̇ = lq̇11u12.v11

u22.ξ = lq̇21u22.v21

(12)

or, as a matrix expression[
uT
12

uT
22

]
ξ̇ =

[
lu12.v11 0

0 lu22.v21

]
q̇ (13)

where q̇ =

[
q̇11
q̇21

]
This kinematic model is under the form Aξ̇ = Bq̇. The forward

and inverse kinematic model are obtained by inverting either A or B. Indeed,
singularities have to be taken into account in those computations (seen in the
course). In equation (13), the singularities can be easily expressed as geometric
conditions. We let the reader describe those conditions and ask nicely their
professor if they don’t find out.

3.2 Passive joints kinematic model

As we already obtained the velocity of the end-effector as a function of the
active joint velocity, it would be easy, using (11) to compute the passive joint
velocities. However, we have 4 equations to express two passive joint velocities.
And some of them cancel the term of the passive joint velocities depending on
the orientation of the vectors v12 and v22. A wise approach is again to make

4



and appropriate dot product that will avoid this issue. The solution is obviously
obtained by applying the dot product of the first line of equation (11) with v12

and the second line with v22, leading to:

v12.ξ̇ = lq̇11v12.v11 + lq̇11 + lq̇12

v22.ξ̇ = lq̇21v22.v21 + lq̇21 + lq̇22
(14)

Or, under the matrix form[
vT
12

vT
22

]
ξ̇ =

[
lv12.v11 + l 0

0 lv22.v21 + l

]
q̇ + lq̇p (15)

where q̇p =

[
q̇12
q̇22

]
is the vector of the passive joint velocities. We can see that

the expression of the passive joint as a function of the end-effector velocity and
the active joint velocities is not affected by singularities on this robot.

4 Second order kinematic models

4.1 Forward and inverse kinematic model

To compute the second order kinematic model, we use the derivative of equation
(11).

ξ̈ = lq̈11v11 − lq̇211u11 + l(q̈11 + q̈12)v12 − l(q̇11 + q̇12)2u12

ξ̈ = lq̈21v21 − lq̇221u21 + l(q̈21 + q̈22)v22 − l(q̇21 + q̇22)2u22

(16)

Again, we can apply the dot product of the first line of equation (16) with u12

and the second line with u22, as they will cancel respectively v12 and v22. Then,
we obtain

u12.ξ̈ = lq̈11u12.v11 − lq̇211u12.u11 − l(q̇11 + q̇12)2

u22.ξ̈ = lq̈21u22.v21 − lq̇221u22.u21 − l(q̇21 + q̇22)2
(17)

or, as a matrix expression[
uT
12

uT
22

]
ξ̈ =

[
lu12.v11 0

0 lu22.v21

]
q̈ +

[
−lq̇211u12.u11 − l(q̇11 + q̇12)2

−lq̇221u22.u21 − l(q̇21 + q̇22)2

]
(18)

This second order kinematic model is under the form
Aξ̈ = Bq̈ + d.

4.2 Passive joints kinematic model

The solution for the passive joint second order kinematic model is obtained in
a manner similar to the first order kinematic model. We apply the dot product
of the first line of equation (16) with v12 and the second line with v22, leading
to:

v12.ξ̈ = lq̈11v12.v11 − lq̇211v12.u11 + l(q̈11 + q̈12)

v22ξ̈ = lq̈21v22.v21 − lq̇221v22.u21 + l(q̈21 + q̈22)
(19)

Or, under the matrix form[
vT
12

vT
22

]
ξ̈ =

[
lv12.v11 + l 0

0 lv22.v21 + l

]
q̈ + lq̈p +

[
−lq̇211v12.u11

−lq̇221v22.u21

]
(20)
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5 Dynamic model

For the dynamic model of the five-bar mechanism in the context of this lab,
only the following base dynamic parameters are considered.

• ZZ1R the grouped inertia on the first link of the left arm.
ZZ1R=0.002 kg.m2

• ZZ2R, the grouped inertia on the first link of the right arm.
ZZ2R=0.002 kg.m2

• mR the grouped mass on the end-effector. mR = 0.5 kg

The dynamic model of the five-bar mechanism is obtained by computing first
the dynamic model of the tree structure without the platform. The Lagrangian
of the tree structure is given by

Lt =
1

2
ZZ1Rq̇

2
11 +

1

2
ZZ2Rq̇

2
21 (21)

Applying the Lagrange equations to (21) gives

τ t =

[
ZZ1R 0

0 ZZ2R

]
q̈ (22)

In a second time, we compute the dynamic model of the free moving platform.
The Lagrangian of the free-moving platform is given by

Lp =
1

2
(ẋ2 + ẏ2)m (23)

Applying the Lagrange equations to (23) gives

wp = mξ̈ (24)

Finally, we can relate the two models (22) and (24) using the Lagrange equations
with multipliers (see course) with the kinematic model (13)

τ = τ t + JTwp (25)

where J = A−1B. We let the reader develop this expression using the previous
dynamic models and the kinematic equations to obtain the expression of the
dynamic model as a function of the active joint acceleration under the form.

τ = Mq̈ + c (26)
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