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Figure 1: The DexTAR robot (Mecademic)

1 Objective

The main objective of the present lab is to compute the geometric, kinematic
and dynamic models of a five-bar mechanism and to compare them with the
results obtained with GAZEBO. Then, a controller will be designed to track a
trajectory in simulation.

The kinematic architecture of the five-bar mechanism is shown in Fig.2. For
the mechanism of the Gazebo mock-up, the geometric parameters are:

• Bar length (all bars are equal length): l = 0.09 m

• Distance between the two active joints: d = 0.118 m

and the base dynamic parameters are:

• ZZ1R the grouped inertia on the first link of the left arm.
ZZ1R=0.002 kg.m2
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• ZZ2R, the grouped inertia on the first link of the right arm.
ZZ2R=0.002 kg.m2

• mR the grouped mass on the end-effector. mR = 0.5 kg
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Figure 2: Kinematic architecture of the five-bar mechanism. Joints located at
A11 and A21 are actuated.

2 Help for the LAB

Some computations required for this lab are given in the course and recalled
in the appendix Computation of the five-bar mechanism models. This help is
provided for the Five-Bar. For the Biglide mechanism (Part 3 of the Lab), a
similar document is a deliverable from the lab. To avoid, loosing time for
Part 3, it is mandatory to prepare this document BEFORE getting to Part 3
during the lab. As a consequence, this should be done AT HOME and not
during the lab sessions.

3 Kinematic models of the five-bar mechanism

In the first part of this lab, we will simulate the kinematic behavior of the five-
bar mechanism and compare it with GAZEBO output. To run the lab, execute
the following steps:

1. Run Gazebo using the command ros2 launch lab amoro gazebo.launch.py

2. Insert the appropriate model by selecting the insert tab then the FiveBar
model.
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You can now go in the student scripts folder and complete the models in the file
five bar models.py. You should not modify the input-output of the functions but
just put the appropriate computation. To check that the models are properly
computed, you must run the model test.py script for the direct models and
inverse model test.py for the inverse ones. To run the python scripts, just go in
the student scripts using the terminal and use the command
$ python3 your script.py
All the following models must be validated

• The Direct Geometric Model

• The Direct Geometric Model for passive joints

• The Inverse Geometric Model

• The First Order Kinematic Model

• The First Order Kinematic Model for passive joints

• The Inverse First Order Kinematic Model

• The Second Order Kinematic Model

• The Second Order Kinematic Model for passive joints

• The Inverse Second Order Kinematic Model

Python math and numpy libraries:
To code the computation of your models. It is recommended to use the math
and numpy libraries. math will contain the trigonometric functions you need
and numpy allows the manipulation of arrays and matrices. numpy is usually
imported under the alias np. The following methods will be handy.

• v = np.array([0.0, 1.0]) to create a 2D vector v

• M = np.array([[0.0, 1.0], [2.0, 3.0]]) to create a 2D matrix M

• u.dot(v) for the dot product of two vectors

• M.dot(v) for the multiplication for the product Mv

• np.matmul(M, N) for the matrix multiplication MN

• np.linalg.inv(M) for the matrix inversion

• M.transpose() for the matrix transpose

4 Computed torque control

4.1 Trajectory generation

Recall: A polynomial trajectory is defined with initials conditions and final
conditions (eventually intermediate). The number of initial and final conditions
will determine the order of the polynomial used for the trajectory (number of
conditions -1).
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As an example, displacement in x with initial and final positions and veloc-
ities (4 conditions) requires a 3rd order polynomial function.

x = a1t
3 + a2t

2 + a3t+ a4

The initials and final conditions are expressed as

x(ti) = a1t
3
i + a2t

2
i + a3ti + a4

ẋ(ti) = 3a1t
2
i + 2a2ti + a3

x(tf ) = a1t
3
f + a2t

2
f + a3tf + a4

ẋ(tf ) = 3a1t
2
f + 2a2tf + a3

which can be put in the form of a linear system

Pa = c

with a = (a1, a2, a3, a4)
T containing the coefficients of the polynomial function.

Solving this linear system gives the polynomial coefficients for the trajectory.
A trajectory between two points A(xA, yA) and B(xB , yB), with null velocity

and acceleration at initial and final position, in the time interval [0, tf ] is given
by a fifth order polynomial function. This specific case can be expressed as:

x(t) = xA + s(t)(xB − xA)

y(t) = yA + s(t)(yB − yA)

with

s(t) = 10

(
t

tf

)3

− 15

(
t

tf

)4

+ 6

(
t

tf

)5

To do: In the control.py file, write down a function to compute the tra-
jectory in Cartesian space as a numpy array given some initial position, final
position and duration. The function should output position, velocity and ac-
celeration for each coordinate. The trajectory should be sampled with a 10 ms
sampling time.

Write down a second function to compute the trajectory (position, velocity,
acceleration) in joint space from Cartesian space using the inverse geometric
and kinematic models.

4.2 Introduction to Computed Torque Control

The Computed Torque Control is based on the feedback linearization of the
system through the inverse dynamic model. The dynamic model of a parallel
robot can be written under the generic form

τ = Mq̈a + c

M being the inertia matrix, definite positive and c the vectore of Coriolisis
and Centrifugal effects. Considering the input τ this system in non-linear, an
auxiliary control input is defined α

α = M−1(τ − c)
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Figure 3: Computed Torque Control Scheme

If the dynamic model is accurate, this auxiliary input correspond to the robot
acceleration.

α = q̈a

A PD control law can be applied on this auxiliary input

α = q̈t +Kd(q̇t − q̇a) +Kp(qt − qa)

WithKp etKd definite positive (usually positive diagonal matrices). The torque
input is deduced from this auxiliary control law

τ = Mα+ c

= M(q̈t +Kd(q̇t − q̇a) +Kp(qt − qa)) + c

Fig.3 shows the controller scheme. With q̃ = qref − qa, the closed-loop
equation of the control system is

¨̃q+Kd
˙̃q+Kpq̃ = 0

Ensuring the convergence of the error q̃ toward 0.

4.3 Computed Torque Control simulation

• Using the Robot class input and output, code in control.py a computed
torque control to track a desired trajectory.

• Define a trajectory between the initial position (0.09,0.06796322) and the
position (0,0.1) in 2s.

• Run the simulation and check the trajectory tracking performed.

• Define a trajectory between the initial position (0.09,0.06796322) and the
position (0.05, 0.0) in 4.0s. What happens? Explain why (hint, plot the
joint effort you ask)
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