
Embedded Computing

M. Briday

year 2020/2021

M. Briday MICRO 2020/2021 1 / 224

Contents

1 Introduction

2 How to deal only with 0 and 1?

3 Specific C language operations

4 General Purpose I/O

5 Clock Sources

6 Pin muxing

7 Timer

8 Pulse Width Modulation

9 Interrupts

10 External Interrupt Handling

11 Serial Comm. (UART/I2C/SPI)

M. Briday MICRO 2020/2021 2 / 224

Contents

1 Introduction

2 How to deal only with 0 and 1?

3 Specific C language operations

4 General Purpose I/O

5 Clock Sources

6 Pin muxing

7 Timer

8 Pulse Width Modulation

9 Interrupts

10 External Interrupt Handling

11 Serial Comm. (UART/I2C/SPI)

M. Briday MICRO 2020/2021 3 / 224

Introduction

Positioning

At The Frontier Between Hardware and Software

sensors
Electronic interface

(analog
and/or digital)

3 © 2014 Atmel Corporation

Atmel SMART | SAM D Series

Introduction
Electronic interface

(analog
and/or digital)

actuators

program

M. Briday MICRO 2020/2021 4 / 224

Introduction

A micro-controller is an integrated circuit that has:

one (or more) calculation unit(s);

some memory (to store a program and data);

some internal peripherals (to access the hardware).

The objective of this course is to learn:

the software environment for deeply embedded systems

the basic hardware peripherals of a micro-controller

the design of a bare metal application

M. Briday MICRO 2020/2021 5 / 224

Main Features

8/16 or 32 bits architecture. This is the size of the data handled by

the processor. The time required to add 2 numbers on 32 bits will be

much longer on a 8-bits processor. . . ;

the pin number available on the chip;

frequency: a micro-controller is a synchronous system, with a clock.

The faster the clock, the faster the calculations are;

power consumption is a key criterion for battery-powered systems;

peripherals implemented (I/O, Analog inputs, communication, . . .);

cost is a criterion for large series.

M. Briday MICRO 2020/2021 6 / 224

The micro-controller market

In 2019:

In value, market of 16.5 billion dollars (17.6 in 2018)

In volume, 26.9 billion microcontrollers (28.1 in 2018)

Trends:

volume growth of 3.9%/year between 2018 and 2023;

value growth of 6.3%/year over the same period

more 32 bits micro-controllers than 4/8bits since 2015.

39% for the automotive industry. Growth in the IoT.

source: VIPress.net - 2019/8/23

M. Briday MICRO 2020/2021 7 / 224

Examples

Arduino Uno: AVR micro-controller ATMega328p
from Atmel/Microchip:

8 bits

32 KB flash (program)
2 KB SRAM (data)

16 MHz

5V

28 pins

Nucleo 32: ARM Cortex-M4 based micro-controller
STM32F303 from ST:

32 bits

32 to 512 KB flash (program)
16 to 80 KB SRAM (data)

72 MHz

3.3V

32 to 144 pins

This board is used in this course.

M. Briday MICRO 2020/2021 8 / 224

Block Diagram

This is a quite small

micro-controller. . . But it

embeds many peripherals!

Description STM32F303x6/x8

12/121 DocID025083 Rev 7

Figure 1. STM32F303x6/8 block diagram

1. AF: alternate function on I/O pins.
M. Briday MICRO 2020/2021 9 / 224

Block Diagram

This is a quite small

micro-controller. . . But it

embeds many peripherals!

This commercial diagram

seems more readable. . .

M. Briday MICRO 2020/2021 9 / 224

Simplified Architecture

ARM Cor-
tex M4 core

Flash
program memory

GPIO
Logic

Input/Output

timers

ADC
read an ana-

log input

SRAM
working memory

DAC
generate an

analog output

I2C
SPI
UART

USB . . .
communication

interface

Memory + core

Peripherals

M. Briday MICRO 2020/2021 10 / 224

The core

Compilation chain: getting the binary code from the C source code.

C source
file1.c

C source
file2.c

C source
file3.c

C Compiler

C Compiler

C Compiler

object file
file1.o

object file
file1.o

object file
file1.o

Linker
target

binary code

M. Briday MICRO 2020/2021 11 / 224

The core

The binary code is in fact a series of elementary instructions ordered in

machine language. One elementary instructions can do:

an arithmetic or logical operation between 2 data (addition,

subtraction, AND, OR, ...);

a memory transfert;

a branch (to another program location);

some specific operations (sleep, mode of operation, . . .).

M. Briday MICRO 2020/2021 12 / 224

How a core works

So the core:

runs a program:

performs calculations;
updates memory;
. . . not much less!

but also interacts with the rest of the system!

Peripheral access

The easiest way is to use memory access (read/write) to interact with the

system.

we will see later on another way to interact with the core, with interrupts page 1.

M. Briday MICRO 2020/2021 13 / 224

Peripheral registers. . .

0

1
1

1
2

0
3

1
4

0
5

1
6

0
7

0

addresses

0x1234

Basic Principle

The status of each bit in a register (0 or 1) is used as input information for

a device.

M. Briday MICRO 2020/2021 14 / 224

Peripheral registers. . .

0

1
1

1
2

0
3

1
4

0
5

1
6

0
7

0

addresses

0x1234

MCU external pin

Basic Principle

The status of each bit in a register (0 or 1) is used as input information for

a device.

M. Briday MICRO 2020/2021 14 / 224

Peripheral registers. . .

0

1
1

1
2

0
3

1
4

0
5

1
6

0
7

0

addresses

0x1234

MCU external pin
0

0

1
1

0
2

1
3

1
4

1
5

0
6

1
7

0x1233

Basic Principle

The status of each bit in a register (0 or 1) is used as input information for

a device.

M. Briday MICRO 2020/2021 14 / 224

Peripheral registers. . .

0

1
1

1
2

0
3

1
4

0
5

1
6

0
7

0

addresses

0x1234

0
0

1
1

0
2

1
3

1
4

1
5

0
6

1
7

0x1233

MCU external pin

MCU external pin

MCU external pin

MCU external pin

MCU external pin

MCU external pin

MCU external pin

MCU external pin

Basic Principle

The status of each bit in a register (0 or 1) is used as input information for

a device.

M. Briday MICRO 2020/2021 14 / 224

Peripheral registers. . .

A register makes the link between the computer part (memory access of

the program) and the electronic part (command of a peripheral).

The device is a combinatorial or sequential system. There are 3 types of

registers:

control register: access allows you to configure the device (write);

status register: access allows to read the device status (read);

data register: allows data to be exchanged with the peripheral

(read/write).

In most cases, many registers are required to interact with a peripheral.

M. Briday MICRO 2020/2021 15 / 224

Contents

1 Introduction

2 How to deal only with 0 and 1?

3 Specific C language operations

4 General Purpose I/O

5 Clock Sources

6 Pin muxing

7 Timer

8 Pulse Width Modulation

9 Interrupts

10 External Interrupt Handling

11 Serial Comm. (UART/I2C/SPI)

M. Briday MICRO 2020/2021 16 / 224

Data handled

Bit (Binary digit), boolean data (0, 1);

Byte 8 bits;

Word 16 or 32 bits! Depends on the cpu!

01234567

byte
MSB LSB

0123456789101112131415

16 bits word
MSB LSB

012345678910111213141516171819202122232425262728293031

32 bits word
MSB LSB

LSB (Least Significant Bit)

MSB (Most Significant Bit)

The bits are numbered from the LSB (bit 0⇔ LSB)

M. Briday MICRO 2020/2021 17 / 224

Counting bytes. . .

Historically, bytes are counted in multiples of 210 = 1024, but the metric

system counts in multiple of 103 = 1000.
2 units are defined, in decimal and binary:

Name Symbol Value

kilo ko 103

mega Mo 106

giga Go 109

tera To 1012

peta Po 1015

Name Symbol Value

kibi kio 210

mebi Mio 220

gibi Gio 230

tebi Tio 240

pebi Pio 250

This has been validated in the ISO norm in 1998, . . . but not always

respected.

M. Briday MICRO 2020/2021 18 / 224

Memory organisation

On every modern processor, we can consider the memory organisation as

just a flat tabular of 2p bytes.

Processor p address space

Microchip PIC18 12 4096

Microchip ATMega328 16 64 kio

ARM Cortex-M 32 4 gio

Practically, it is often possible to read/write several bytes (2/4) to

accelerate memory transferts.

The access in that last case should be aligned: for instance, a 32-bits

access should have a memory address that is a multiple of 4.

M. Briday MICRO 2020/2021 19 / 224

Unsigned integers coding

The hexadecimal base is very often used in embedded
systems.

The conversion from binary⇔ hex basis is straightforward:
an hex number is a group of 4 binary digits.

Numbers in hex will be prefixed by 0x, as in C language.
Example:

int val1 = 0x1234; //hexa
int val2 = 4660; //decimal

Here, val1 and val2 will have the same value in memory.

0001 0010 0011 0100

The compiler performs the base change during code
generation.

decimal value Hexadecimal Binary

0 0x0 0 0000

1 0x1 0 0001

2 0x2 0 0010

3 0x3 0 0011

4 0x4 0 0100

5 0x5 0 0101

6 0x6 0 0110

7 0x7 0 0111

8 0x8 0 1000

9 0x9 0 1001

10 0xa 0 1010

11 0xb 0 1011

12 0xc 0 1100

13 0xd 0 1101

14 0xe 0 1110

15 0xf 0 1111

16 0x10 1 0000

17 0x11 1 0001

18 0x12 1 0010

19 0x13 1 0011

M. Briday MICRO 2020/2021 20 / 224

Integer coding

As a consequence, in hexadecimal, a byte requires 2 digits:

0x00⇒ 0

. . .

0xFF⇒ 255

A value is coded on the interval [0, 28 − 1] = [0, 255]

How to represent a negative value?

We can only deal with 2 symbols: 0 and 1. . .

M. Briday MICRO 2020/2021 21 / 224

Signed numbers - a first naive approach

we split the sign and the absolute value:

one bit (MSB) codes the sign (0 is +, 1 is -)

2n−1 bits for the absolute value

The interval is [−(2n−1 − 1), 2n−1 − 1] => [−127, 127]

1st problem: Zero is coded twice:

+0 = 0000 0000

-0 = 1000 0000

How to do the code if(val==0) ...?

Warning

This representation is not used in real processors

M. Briday MICRO 2020/2021 22 / 224

Signed numbers - a first naive approach

The electronic circuit that performs the addition should be updated:

30 (0x1E)

0

0

1

0

2

0

3

1

4

1

5

1

6

1

7

0

+

-12 (-0xC)

0

1

1

0

2

0

3

0

4

1

5

1

6

0

7

0

01234567

30+(-12) = 18 6= 0xAA = -42

0

1

1

0

2

1

3

0

4

1

5

0

6

1

7

0

Warning

This representation is not used in real processors

M. Briday MICRO 2020/2021 23 / 224

Signed numbers - a first naive approach

The electronic circuit that performs the addition should be updated:

30 (0x1E)

0

0

1

0

2

0

3

1

4

1

5

1

6

1

7

0

+

-12 (-0xC)

0

1

1

0

2

0

3

0

4

1

5

1

6

0

7

0

01234567

30+(-12) = 18 6= 0xAA = -42

0

1

1

0

2

1

3

0

4

1

5

0

6

1

7

0

Warning

This representation is not used in real processors

M. Briday MICRO 2020/2021 23 / 224

Signed integers - 2’s Complement

Signed integers are coded using the 2’s complement: 2n.

With 8 bits, -12 is coded 28 − 12 = 244, in binary 1111 0100

As a consequence:

(-0) is coded 28 − 0 = 256, but using 8 bits⇒ 0000 0000

unicity of 0

The interval is no more symetric: [−2n−1, 2n−1 − 1] => [−128, 127]

M. Briday MICRO 2020/2021 24 / 224

Signed integers - 2’s Complement

The electronic circuit that performs the addition is the same:

30 (0x1E)

0

0

1

0

2

0

3

1

4

1

5

1

6

1

7

0

+

-12 (0xF4)

0

1

1

1

2

1

3

1

4

0

5

1

6

0

7

0

01234567

30+(-12) = 18 = 0x12

0

0

1

0

2

0

3

1

4

0

5

0

6

1

7

0

As a side effect, the MSB gives the sign.

M. Briday MICRO 2020/2021 25 / 224

Signed integers - 2’s Complement

The electronic circuit that performs the addition is the same:

30 (0x1E)

0

0

1

0

2

0

3

1

4

1

5

1

6

1

7

0

+

-12 (0xF4)

0

1

1

1

2

1

3

1

4

0

5

1

6

0

7

0

01234567

30+(-12) = 18 = 0x12

0

0

1

0

2

0

3

1

4

0

5

0

6

1

7

0

As a side effect, the MSB gives the sign.

M. Briday MICRO 2020/2021 25 / 224

Coding Intervals

Coding intervals for n bits are:

[0, 2n − 1] with unsigned int

[−2n−1, 2n−1 − 1] with signed int

data size unsigned signed

8 bits [0,255] [-128,127]

16 bits [0,65 535] [-32 768,32 767]

32 bits [0,4 294 967 295] [-2 147 483 648,2 147 483 647]

64 bits [0,18 446 744 073 709 551 616] [-9 223 372 036 854 775 808, 9 223 372 036 854 775 807]

On [0, 2n−1 − 1], the coding of both unsigned and signed integers is the

same.

M. Briday MICRO 2020/2021 26 / 224

Integers in C/C++

The C type int is the basic data that is handled by the CPU. its size must

be at least 16 bits.

the AVR architecture (8-bits CPU), one int is 16 bits.

the ARM architecture (32-bits CPU), one int is 32 bits.

Classical types are:

type common size norm

char 8 bits ≥ 8 bits

short 16 bits ≥ 16 bits

int 32 bits ≥ 16 bits

long 32 bits ≥ 32 bits

long long 64 bits ≥ 64 bits

Warning

An int may be signed or unsigned!! To be sure, one can write

unsigned int.

M. Briday MICRO 2020/2021 27 / 224

Integers in C/C++

To be sure of the size of the manipulated data, we can use (with the

header file #include <stdint.h>):

data size unsigned signed

8 bits uint8_t sint8_t

16 bits uint16_t sint16_t

32 bits uint32_t sint32_t

64 bits uint64_t sint64_t

M. Briday MICRO 2020/2021 28 / 224

Overflow with C/C++

Warning

With a 16/32 bits CPU, overflows can easily occur!

They are not handled by the C (operation using modulo 2n).

What is the result of the following code ?

uint8_t val = 400;

sint8_t t = 100;
sint8_t u = 50;
sint8_t v = t+u; //?

uint8_t nbItem = 100;
while(nbItem >= 0)
{
//user code
nbItem--;

}

//or

for(uint8_t i=0;i<256;i++){
//user code

}

M. Briday MICRO 2020/2021 29 / 224

Byte order in memory - Endianness

For data greater than 1 byte, 2 solutions are available.
Let the 32-bits value 305419896 (or 0x12345678):

Big Endian

The hightest significant byte is at the highest
address

adresses

0x1234 12

0x1235 34

0x1236 56

0x1237 78

Little Endian

The hightest significant byte is at the lowest
address

adresses

0x1234 78

0x1235 56

0x1236 34

0x1237 12

M. Briday MICRO 2020/2021 30 / 224

Byte order in memory - Endianness

Impact:

communication between 2 systems⇒ the endianness should be

defined for the network: Network Byte Order of the IP protocol IP for

instance.

memory dump

As there are 2 possibilities, founders didn’t made the same choice!

Intel (x86) for Little Endian

Motorola (PowerPC) for Big Endian (also Alpha, Sparc, Mips, . . .)

ARM cores can workk with the 2 approaches.

M. Briday MICRO 2020/2021 31 / 224

Fixed point numbers

We use the same hardware as for integers. Results should be interpreted.

Example: temperature sensor DS1620 (Maxim), the value is coded in

0.5°C increment, using 9 bits (2’s complement):

0

X

1

X

2

X

3

X

4

X

5

X

6

X

7

1

8

1

9

1

10

0

11

0

12

1

13

1

14

1

15

0

not significative
2−12021222324252627 ,

MSB LSB

Here, the value is -25°C.

M. Briday MICRO 2020/2021 32 / 224

Floating point numbers

In that case, there is a trade-off between range and precision. The

position of the point is not fixed. The standard IEEE754 defines the

number:

val = (−1)S × 1,M× 2E

where:

S is the sign (0⇒ positive, 1⇒ negative)

M is the fractionnal part of the mantissa, 23 or 52 bits;

E is the exponent (coded en with a bias of 127 with 32 bits, and 1023

with 64 bits), 8 or 11 bits;

the number is coded using 32 bits (float), or 64 bits (double):

0

S

12345678910111213141516171819202122232425262728293031

Exponent Mantissa

0

S

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

Exponent Mantissa

M. Briday MICRO 2020/2021 33 / 224

Floating point numbers - addition steps

1 , 0 1 1 x24 (10110)2 or 2210

+ 1 , 0 0 1 x22 (100, 1)2 or 4, 510

Étapes

Decoding values

Adapt to the same exponent

Perform operation

Normalize the result

Encode result

M. Briday MICRO 2020/2021 34 / 224

Floating point numbers - addition steps

1 0 1 , 1 x22 (10110)2 or 2210

+ 1 , 0 0 1 x22 (100, 1)2 or 4, 510

Étapes

Decoding values

Adapt to the same exponent

Perform operation

Normalize the result

Encode result

M. Briday MICRO 2020/2021 34 / 224

Floating point numbers - addition steps

1 0 1 , 1 x22 (10110)2 or 2210

+ 1 , 0 0 1 x22 (100, 1)2 or 4, 510

Étapes

Decoding values

Adapt to the same exponent

Perform operation

Normalize the result

Encode result

M. Briday MICRO 2020/2021 34 / 224

Floating point numbers - addition steps

1 0 1 , 1 x22 (10110)2 or 2210

+ 1 , 0 0 1 x22 (100, 1)2 or 4, 510

1 1 0 , 1 0 1 x22 (11010, 1)2 or 26, 510

Étapes

Decoding values

Adapt to the same exponent

Perform operation

Normalize the result

Encode result

M. Briday MICRO 2020/2021 34 / 224

Floating point numbers - addition steps

1 0 1 , 1 x22 (10110)2 or 2210

+ 1 , 0 0 1 x22 (100, 1)2 or 4, 510

1 , 1 0 1 0 1 x24 (11010, 1)2 or 26, 510

Étapes

Decoding values

Adapt to the same exponent

Perform operation

Normalize the result

Encode result

M. Briday MICRO 2020/2021 34 / 224

Floating point numbers - in an MCU

These steps are not straightforward:

Hardware solution: Floating Point Unit

operation is fast (few MCU cycles)
better energy efficient
require some surface on the silicon (cost)

Software: use a software lib (included in libc)

slow operation. . .
library requires a lot of memory (flash);
do we always need float in an MCU?

Tests on a MCU Teensy 3.1 (no FPU)

For 1 million of add operations (20+6):

31,3 ms using int;

700,3 ms using float (×22);

1618,7 ms using double (×51);

M. Briday MICRO 2020/2021 35 / 224

Floating point numbers - in an MCU

These steps are not straightforward:

Hardware solution: Floating Point Unit

operation is fast (few MCU cycles)
better energy efficient
require some surface on the silicon (cost)

Software: use a software lib (included in libc)

slow operation. . .
library requires a lot of memory (flash);
do we always need float in an MCU?

Tests on a MCU Teensy 3.1 (no FPU)

For 1 million of add operations (20+6):

31,3 ms using int;

700,3 ms using float (×22);

1618,7 ms using double (×51);

M. Briday MICRO 2020/2021 35 / 224

ASCII code for characters

American Standard Code for Information Interchange

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1x DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2x ! " # $ % & ’ () * + , - . /

3x 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4x @ A B C D E F G H I J K L M N O

5x P Q R S T U V w X Y Z [\] ∧ _

6x ‘ a b c d e f g h i j k l m n o

7x p q r s t u v w x y z { | } ~ DEL

Standard using 7 bits.

M. Briday MICRO 2020/2021 36 / 224

Coding a character in C

The type char uses 1 byte.

Warning

Depending on the compiler, it may be signed or not

char 6= signed char 6= unsigned char

A simple character may be coded using simple "’". The 3 statements are

similars:

char c = ’A’; //c gets ASCII code of character A

char d = 0x41; //ASCII code using hex

char e = 65; //or decimal

The character "\" defines among others:

’\n’⇒ new line;

’\\’⇒ simple "\";
’\0’⇒ NUL (end of string)

M. Briday MICRO 2020/2021 37 / 224

Coding a character string in C

The type char * is a pointer to a 1-byte integer, or a tabular (size

unknown) of 1-byte integers.

This is the historical way to code strings. NUL is used to define the end of

string.

A character string uses ". Example:

char *txt="Bonjour !";

Warning

NUL is not explicitely defined but is present in memory:

B o n j o u r !

in memory 42 6F 6E 6A 6F 75 72 20 21 0

M. Briday MICRO 2020/2021 38 / 224

Evolution: standard ISO-8859

The ASCII uses 7 bits, so there are 128 codes available for country specific

codes

standard ISO-8859-1 for Western Europe (accented characters)

standard ISO-8859-7 for Greece

M. Briday MICRO 2020/2021 39 / 224

Limits of standard ISO-8859

128 codes are not sufficient. . .

some editors use their own extension;

it is impossible to guess whose code is used;

how to code a text that mixes 2 languages?

The solution?

Unicode!

M. Briday MICRO 2020/2021 40 / 224

Limits of standard ISO-8859

128 codes are not sufficient. . .

some editors use their own extension;

it is impossible to guess whose code is used;

how to code a text that mixes 2 languages?

The solution? Unicode!

M. Briday MICRO 2020/2021 40 / 224

Unicode

Developed by the Unicode Consortium, which defines a universal

character set, i.e. it aims to code all human languages. Each character

has a unique number (the code point) between 0x0 and 0x10FFFFFF It

also specifies for the properties of each code point:

its general category (letter, marque, number, separator, command,

punctuation,symbol) ;

the lowercaser, uppercase, corresponding title case (for a letter) ;

its value (for a number) ;

. . .

The Unicode Consortium publishes free access files containing this

information. Links :

Wikipedia : http://en.wikipedia.org/wiki/Unicode

Consortium Unicode : http://unicode.org/

Unicode Character Database : http://www.unicode.org/ucd/

M. Briday MICRO 2020/2021 41 / 224

http://en.wikipedia.org/wiki/Unicode
http://unicode.org/
http://www.unicode.org/ucd/

Unicode - Memory coding

Data representation is defined by UTF: Unicode Transformation Format,

with different flavors:

UTF-32 simply using a 32-bit data:

large;

sensitive to endianness: UTF-32BE, UTF-32LE

UTF-16 1 or 2 16-bits words:

memory trade-off (prefered version in memory)

most of codes only require 1 word;

sensitive to endianness: UTF-16BE, UTF-16LE.

UTF-8 characters 0 to 127 only use 1 byte:

memory trade-off (prefered for files);

ASCII compatible;

insensitive to endianness.

M. Briday MICRO 2020/2021 42 / 224

Unicode - Memory coding

Using UTF-8:

UTF-8 binary representation Meaning

0xxxxxxx 1 byte⇒ 7 bits

110xxxxx 10xxxxxx 2 bytes⇒ 8 to 11 bits

1110xxxx 10xxxxxx 10xxxxxx 3 bytes⇒ 12 to 16 bits

11110xxx 10xxxxxx 10xxxxxx 10xxxxxx 4 bytes⇒ 17 to 21 bits

Example:

string str="École";

É c o l e

in memory c3 89 63 6f 6c 65 0

M. Briday MICRO 2020/2021 43 / 224

Contents

1 Introduction

2 How to deal only with 0 and 1?

3 Specific C language operations

4 General Purpose I/O

5 Clock Sources

6 Pin muxing

7 Timer

8 Pulse Width Modulation

9 Interrupts

10 External Interrupt Handling

11 Serial Comm. (UART/I2C/SPI)

M. Briday MICRO 2020/2021 44 / 224

Specific C language operations

The handling of registers in C language requires some additions on the C

language to manage:

bit-level manipulation operations;

pointers. . .

structured data

static and volatile data

We will finally see the structure of an embedded program, which differs

slightly from a program running with an OS.

NOTE

Some C basics blocks are given in the first section of this chapter. This is

only a remainder, and NOT a C language course!

M. Briday MICRO 2020/2021 45 / 224

C variables

The type of a variable is explicitely defined in C:

uint16_t val; //val is a 16 bit unsigned value

uint16_t val2; //val2 i another variable

val = 12; //assignment

val += 5; //same as val = val+12

val ++; //same as val = val+1

val2 = val-1; // assignement of value val2

Note: each statement end with ;

M. Briday MICRO 2020/2021 46 / 224

C - condition

if(condition) {

//code executed if the condition it true

} else {

//code execute if the condition is false

}

the else block is optional.

M. Briday MICRO 2020/2021 47 / 224

C - condition

Example:

if(val > 12) {

//code executed if the condition it true

} else {

//code execute if the condition is false

}

NOTE

In C, the = is used for an assignment.

To compare 2 numbers, you need to use ==

if(val == 12) {

//code executed if the condition it true

}

M. Briday MICRO 2020/2021 48 / 224

C - loop (1)

while(condition)

{

//code executed until condition get false

}

Often used when we do not know the number of loops.

Example

while(val < 10)

{

//code executed until condition get false

}

M. Briday MICRO 2020/2021 49 / 224

C - loop (2)

for(initialization; condition; update} //seperator is ’;’

{

//loop code

}

It works as:

initialization; //done once at startup

while(condition)

{

//loop code

update; //done at end of loop

}

M. Briday MICRO 2020/2021 50 / 224

C - loop (2)

for(int i=0; i<10; i++}

{

//loop code done 10 times.

//with i from 0 to 9.

}

M. Briday MICRO 2020/2021 51 / 224

C - Function

void setup()
{
//code of the function loop

}

void loop()
{
//code of the function loop

}

int main()
{
while(1)
{
loop();

}
}

Note

the main() function is the entry point of a program

we can not define a function inside another function

No code outside of a function

the void/int is the returned value of the function

the compiler parses the input text sequentially: a
function should be defined before being called.

a variable may be declared outside of any function. It
becomes global (i.e. usable everywhere in the code

M. Briday MICRO 2020/2021 52 / 224

C - Function

//function definition with parameters.
int max(int a, int b)
{
//local variable usable only
//in the function
int result;
if(a > b) {
result = a;

} else {
result = b;

}
return result; //value returned to the caller

}

int main()
{
int a;
a = max(12,34); //function call with parameters

}

M. Briday MICRO 2020/2021 53 / 224

C - Mixing all together

int main() //function def
{
const int threshold = 100; //constant value
int boundMin = 1000; //variable declaration with initial value
int boundMax = 0;
while(1) //loop
{
int val = readSensor(); //call a function
if(val > threshold) //test
{
alert(val);

}
boundMin = min(val,boundMin); //call
boundMax = max(val,boundMax); //call

}
}

Note

a variable defined inside a block {} is defined only in this block.

indentation makes codes readable: Each time a { is started, the code

is shifted right with some space.

M. Briday MICRO 2020/2021 54 / 224

C - bit-to-bit NO operation

The C unary operator ∼ means: bit-to-bit NO:

bit ∼ bit

0 1

1 0

val

7 6 5 4 3 2 1 0

0 1 1 1 1 0 1 0

∼val

1 0 0 0 0 1 0 1

char val = 0x7A;

val = ∼val; //0x85

Usage

The operation ∼ inverts each bit of a data.

M. Briday MICRO 2020/2021 55 / 224

C - bit-to-bit NO operation

The C unary operator ∼ means: bit-to-bit NO:

bit ∼ bit

0 1

1 0

val

7 6 5 4 3 2 1 0

0 1 1 1 1 0 1 0

∼val 1 0 0 0 0 1 0 1

char val = 0x7A;

val = ∼val; //0x85

Usage

The operation ∼ inverts each bit of a data.

M. Briday MICRO 2020/2021 55 / 224

C - Logical NO operation

The C unary operator ! means: Boolean NO:

char val = 0x7A;
val = !val;
// => val = 0
val = !val;
// => val != 0

val

7 6 5 4 3 2 1 0

0 1 1 1 1 0 1 0

!val

0 0 0 0 0 0 0 0

Usage

The operation ! acts on the whole value of the variable.

M. Briday MICRO 2020/2021 56 / 224

C - Logical NO operation

The C unary operator ! means: Boolean NO:

char val = 0x7A;
val = !val;
// => val = 0
val = !val;
// => val != 0

val

7 6 5 4 3 2 1 0

0 1 1 1 1 0 1 0

!val 0 0 0 0 0 0 0 0

Usage

The operation ! acts on the whole value of the variable.

M. Briday MICRO 2020/2021 56 / 224

C - Complementing operations

Do not confuse:

bit-to-bit NO: ∼
int x = ∼val;
Each bit is complemented

Boolean NO: !

int x = !val;

The Boolean meaning of the C language is:

0 (FALSE in C) becomes a value different from 0 (not necessarily 1!);
a value different from 0 (TRUE in C) becomes 0;

This value depends on the compiler!

M. Briday MICRO 2020/2021 57 / 224

C - Shift operator <<

The binary operator ’<<’ means: left shift:

char val = 0x7A;
char val2 = val << 2;
// =>val2 = 0xE8;

val

7 6 5 4 3 2 1 0

0 1 1 1 1 0 1 0

val << 2

1 1 1 0 1 0 0 0

The n bits shift to the left:

insert n 0 from the Lowest Significant Bit (LSB);

same operation as multiplying to 2n.

Usage

It is used to avoid calculating bit numbers:

int x = 1 << 5; // => x= 100000 in binary

M. Briday MICRO 2020/2021 58 / 224

C - Shift operator <<

The binary operator ’<<’ means: left shift:

char val = 0x7A;
char val2 = val << 2;
// =>val2 = 0xE8;

val

7 6 5 4 3 2 1 0

0 1 1 1 1 0 1 0

val << 2 1 1 1 0 1 0 0 0

The n bits shift to the left:

insert n 0 from the Lowest Significant Bit (LSB);

same operation as multiplying to 2n.

Usage

It is used to avoid calculating bit numbers:

int x = 1 << 5; // => x= 100000 in binary

M. Briday MICRO 2020/2021 58 / 224

C - Shift operator >>

The binary operator ’>>’ means: right shift:

char val = 0x7A;
char val2 = val >> 2;
// =>val2 = 0x1E;

val

7 6 5 4 3 2 1 0

0 1 1 1 1 0 1 0

val >> 2

0 0 0 1 1 1 1 0

The n bits shift to the right:

same operation as dividing to 2n.

Warning!

When a variable is signed, if the Most Significant Bit (MSB) is 1 (negative

value), the shift introduces n 1 (it keeps the sign).

M. Briday MICRO 2020/2021 59 / 224

C - Shift operator >>

The binary operator ’>>’ means: right shift:

char val = 0x7A;
char val2 = val >> 2;
// =>val2 = 0x1E;

val

7 6 5 4 3 2 1 0

0 1 1 1 1 0 1 0

val >> 2 0 0 0 1 1 1 1 0

The n bits shift to the right:

same operation as dividing to 2n.

Warning!

When a variable is signed, if the Most Significant Bit (MSB) is 1 (negative

value), the shift introduces n 1 (it keeps the sign).

M. Briday MICRO 2020/2021 59 / 224

C - OR operator

The binary | operator means: bit-to-bit OR:

bitA bitB bitA or bitB

0 0 0

0 1 1

1 0 1

1 1 1

⇓

bitA bitB bitA or bitB

0 bitB bitB

1 bitB 1

val

7

X

6

X

5

X

4

X

3

0/1

2

X

1

X

0

X

|

0x10 00001000

val | 0x10

XXXX1XXX

Usage

The OR masking allows to force one or more bits to 1.

M. Briday MICRO 2020/2021 60 / 224

C - OR operator

The binary | operator means: bit-to-bit OR:

bitA bitB bitA or bitB

0 0 0

0 1 1

1 0 1

1 1 1

⇓

bitA bitB bitA or bitB

0 bitB bitB

1 bitB 1

val

7

X

6

X

5

X

4

X

3

0/1

2

X

1

X

0

X

|

0x10 00001000

val | 0x10

XXXX1XXX

Usage

The OR masking allows to force one or more bits to 1.

M. Briday MICRO 2020/2021 60 / 224

C - OR operator

The binary | operator means: bit-to-bit OR:

bitA bitB bitA or bitB

0 0 0

0 1 1

1 0 1

1 1 1

⇓

bitA bitB bitA or bitB

0 bitB bitB

1 bitB 1

val

7

X

6

X

5

X

4

X

3

0/1

2

X

1

X

0

X

|

0x10 00001000

val | 0x10 XXXX1XXX

Usage

The OR masking allows to force one or more bits to 1.

M. Briday MICRO 2020/2021 60 / 224

C - OR mask : setting a bit

Example:

short a = 0x0123; //=> in binary: 0000 0001 0010 0011
a = a | 0x0004; //=> set bit 2

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

1

8

0

9

0

10

1

11

0

12

0

13

0

14

1

15

1a

|

0x4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1

a = a | (1 << 7); //=> set bit 7

a

|

1 << 7 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0123456789101112131415

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

1

8

0

9

0

10

1

11

0

12

0

13

1

14

1

15

1

0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1

M. Briday MICRO 2020/2021 61 / 224

C - OR mask : setting a bit

Example:

short a = 0x0123; //=> in binary: 0000 0001 0010 0011
a = a | 0x0004; //=> set bit 2

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

1

8

0

9

0

10

1

11

0

12

0

13

0

14

1

15

1a

|

0x4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1

a = a | (1 << 7); //=> set bit 7

a

|

1 << 7 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0123456789101112131415

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

1

8

0

9

0

10

1

11

0

12

0

13

1

14

1

15

1

0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1

M. Briday MICRO 2020/2021 61 / 224

C - OR mask : setting a bit

Example:

short a = 0x0123; //=> in binary: 0000 0001 0010 0011
a = a | 0x0004; //=> set bit 2

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

1

8

0

9

0

10

1

11

0

12

0

13

0

14

1

15

1a

|

0x4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1

a = a | (1 << 7); //=> set bit 7

a

|

1 << 7 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0123456789101112131415

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

1

8

0

9

0

10

1

11

0

12

0

13

1

14

1

15

1

0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1

M. Briday MICRO 2020/2021 61 / 224

C - OR mask : setting a bit

shift and mask. . .

The use of shifting and masking operations will be required: registers are

32-bits wide!

Example:

a = a | (1<<31); //=> set bit 31

a |= (1<<31); //same operation, shorter

//set many bits at the same time:

a |= (1 <<8) | (1<<4); //set bits 8 and 4.

M. Briday MICRO 2020/2021 62 / 224

C - AND operator

The binary & operator means: bit-to-bit AND:

bitA bitB bitA and bitB

0 0 0

0 1 0

1 0 0

1 1 1

⇓

bitA bitB bitA and bitB

0 bitB 0

1 bitB bitB

val

7

X

6

X

5

X

4

X

3

0/1

2

X

1

X

0

X

&

0x10 00001000

val & 0x10

00000/1000

Usage

The AND masking allows to:

isolate one or more bits, resetting the others for a test;

reset 1 or more bits.

M. Briday MICRO 2020/2021 63 / 224

C - AND operator

The binary & operator means: bit-to-bit AND:

bitA bitB bitA and bitB

0 0 0

0 1 0

1 0 0

1 1 1

⇓

bitA bitB bitA and bitB

0 bitB 0

1 bitB bitB

val

7

X

6

X

5

X

4

X

3

0/1

2

X

1

X

0

X

&

0x10 00001000

val & 0x10

00000/1000

Usage

The AND masking allows to:

isolate one or more bits, resetting the others for a test;

reset 1 or more bits.

M. Briday MICRO 2020/2021 63 / 224

C - AND operator

The binary & operator means: bit-to-bit AND:

bitA bitB bitA and bitB

0 0 0

0 1 0

1 0 0

1 1 1

⇓

bitA bitB bitA and bitB

0 bitB 0

1 bitB bitB

val

7

X

6

X

5

X

4

X

3

0/1

2

X

1

X

0

X

&

0x10 00001000

val & 0x10 00000/1000

Usage

The AND masking allows to:

isolate one or more bits, resetting the others for a test;

reset 1 or more bits.

M. Briday MICRO 2020/2021 63 / 224

C - AND Mask: to test. . .

Use for testing

//binary sensor associated to bit 4

int val=readSensor();

if(val & 0x10) {

...

}

The result of the operation (val & 0x10) is either:

0x0 FALSE in C: bit 4 of val is not set;
0x10 TRUE in C: bit 4 of val is set

This is compatible with the condition in the if statement.

M. Briday MICRO 2020/2021 64 / 224

C - AND Mask: to test. . .

Example:

//=> in binary: 0001 0010 0011

int a = 0x123;

//=> test bit 5

if(a & (1<<5)) {...}

0

0

1

0

2

0

3

1

4

0

5

0

6

1

7

0

8

0

9

0

10

1

11

1a

&

1 << 5 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

M. Briday MICRO 2020/2021 65 / 224

C - AND mask: . . . and reset

usage to reset a bit

Example: reset bit 4 of 32-bits variable val:

//not so readable...
val = val & 0xFFFFFFEF;

//or simpler with the complementary operator:
val = val & ∼(1 << 4);

X X X X X X X X X X X X X X X Xval

&

∼(1 << 4)

1 << 4

...

...

...

...

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

0

10

0

11

1

12

0

13

0

14

0

15

0

1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

0xF 0xF 0xE 0xF

X X X X X X X X X X X 0 X X X X

M. Briday MICRO 2020/2021 66 / 224

C - AND mask: . . . and reset

usage to reset a bit

Example: reset bit 4 of 32-bits variable val:

//not so readable...
val = val & 0xFFFFFFEF;

//or simpler with the complementary operator:
val = val & ∼(1 << 4);

X X X X X X X X X X X X X X X Xval

&

∼(1 << 4)

1 << 4

...

...

...

...

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

0

10

0

11

1

12

0

13

0

14

0

15

0

1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

0xF 0xF 0xE 0xF

X X X X X X X X X X X 0 X X X X

M. Briday MICRO 2020/2021 66 / 224

C - AND mask: . . . and reset

usage to reset a bit

Example: reset bit 4 of 32-bits variable val:

//not so readable...
val = val & 0xFFFFFFEF;

//or simpler with the complementary operator:
val = val & ∼(1 << 4);

X X X X X X X X X X X X X X X Xval

&

∼(1 << 4)

1 << 4

...

...

...

...

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

0

10

0

11

1

12

0

13

0

14

0

15

0

1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

0xF 0xF 0xE 0xF

X X X X X X X X X X X 0 X X X X

M. Briday MICRO 2020/2021 66 / 224

C - AND mask: . . . and reset

usage to reset a bit

Example: reset bit 4 of 32-bits variable val:

//not so readable...
val = val & 0xFFFFFFEF;

//or simpler with the complementary operator:
val = val & ∼(1 << 4);

X X X X X X X X X X X X X X X Xval

&

∼(1 << 4)

1 << 4

...

...

...

...

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

0

10

0

11

1

12

0

13

0

14

0

15

0

1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

0xF 0xF 0xE 0xF

X X X X X X X X X X X 0 X X X X

M. Briday MICRO 2020/2021 66 / 224

C - Mask operations - Summary

set a bit => OR mask ’|’

// set bit 25 of a:
a = a | (1 << 25);
a |= (1 << 25);

reset a bit => AND mask ’&’ and complementation ’∼’

// reset bit 25 of a:
a = a & ∼(1 << 25);
a &= ∼(1 << 25);

test a bit=> AND mask ’&’

// test bit 25
if(a & (1 << 25)) {
.. //code executed if the bit is set

}

M. Briday MICRO 2020/2021 67 / 224

Mask operations exercices

ex1

Give the value of val between each line:

uint16_t val = 0x4567;

val = val | 0x1513;

// val =>

val = val & 0xFF22;

// val =>

ex2

Give the value of val2:

uint16_t val2 = 0x74F0;

val2 = val2 & ∼(0xF <<8) | (0xA <<8) ;

// val2 =>

M. Briday MICRO 2020/2021 68 / 224

Mask operations exercices

ex3

val is an input value (unknown) of type uint16_t Write the code to set

bits 4 and 5 of val:

val =

Write the code to reset bits 7 and 8 of val:

val =

Write the code to both set bits 4 and 5, and reset bit 2 and 3 of val

val =

M. Briday MICRO 2020/2021 69 / 224

C - Pointer basics

A data in memory holds 2 data:

the address of val is 0x34;

the value of val is 0x4C (0100 1100)2

With C language:
The assignment of value 0x12 at address 0x34

char val = 0x4C;

Definition
A pointer is a variable that contains the address of another
variable

To define a variable b that store the address of val, we write:

int b = &val; // b=0x34

But, we have no information of the type (char, int, . . .), only
its address.

00000 111

addresses

0x35

0x34

0x33

val

Note: we simplify here with variables/addresses on 8 bits... but the data are on 32 bits in reality!

M. Briday MICRO 2020/2021 70 / 224

C - Pointer basics (2)

Pointers allows to know the type of the data. It contains:

the type of the data that is pointed;

a * to show that it is a pointer;

A pointer stores an address, so pointers have all the same size:

int* x; //x is a pointer to an integer

char* x; //x is a pointer to a character

//x is a pointer to a 8-bits unsigned integer:

unsigned char* x;

M. Briday MICRO 2020/2021 71 / 224

C - pointer basics (3)

To remember

& means "the address of": &a⇔ address of variable a.

* allows to "dereference un pointer"

char* b; //b is a pointer to a char

b = &val; // b=0x34

In this way, b is a pointer to a char data. And val type is char. . .

Dereference a pointer means access to the pointed value.

We can then do the manipulations:

*b = 0x12; //dereference a pointer

We write value 0x12 in the address pointed by b:

b always contains the address of val;

the value of val is modified.

M. Briday MICRO 2020/2021 72 / 224

C - pointer basics (3)

To remember

& means "the address of": &a⇔ address of variable a.

* allows to "dereference un pointer"

char* b; //b is a pointer to a char

b = &val; // b=0x34

In this way, b is a pointer to a char data. And val type is char. . .

Dereference a pointer means access to the pointed value.

We can then do the manipulations:

*b = 0x12; //dereference a pointer

We write value 0x12 in the address pointed by b:

b always contains the address of val;

the value of val is modified.

M. Briday MICRO 2020/2021 72 / 224

C - arrays

An array is a contiguous list of elements of the same type. To
define a tabular with 10 unsigned 8-bits integers:

unsigned char tab[10];

We can get a data in the array with its index. Here, val gets
the value from data at addres 0x36.

unsigned char val = tab[2];

Pointers?
The name of an array is a pointer, which points to the first
element of the array

As a consequence, type of tab is unsigned char *

and:

tab[0] <=> *tab

tab <=> &tab[0]

tab[3]

tab[2]

tab[1]

tab[0]

addresses

0x34

0x35

M. Briday MICRO 2020/2021 73 / 224

C - Type definition

Custom types may be defined with the typedef keyword:

//definition of type ’byte’

typedef unsigned char byte;

We enhance basic types. The definition of a variable respects the same

syntax:

int a;

byte b; //like an unsigned char

...

a = 0x1234;

b = 12;

Note: Redefined types such as uint32_t are found in the standard C library to

compensate the lack of portability of data sizes: int can be 16 or 32 bits depending on

the architecture.

M. Briday MICRO 2020/2021 74 / 224

C - Structures (1)

The C language allows to define basic scalar types (char, int, ...) and

homogeneous arrays.

It allows to declare structured types with the keyword struct:

typedef struct {

int data1;

char data2;

unsigned char data3;

} newStruct;

From this structure definition, we can instantiate a variable:

newStruct myVar;

M. Briday MICRO 2020/2021 75 / 224

C - Structures (2)

To access the different fields of
the structure, we use the
notation:

// type int
myVar.data1 = 4;
// type char
myVar.data2 = ’c’; //=0x63
// type unsigned char
myVar.data3 = 33;

newStruct

data3
(unsigned char)

data2
(char)

data1
(int)

addresses

0x1234

0x1235

0x1236

0x1237

0x1238

0x1239

0000 0000

0000 0000

0000 0000

0000 0100

0110 0011

0010 0001

myVar

M. Briday MICRO 2020/2021 76 / 224

C - Structures (3)

To access a structure field, a pointer should be dereferenced:

(*GPIOA).MODER = ...

A simplified writing is available in C (completely equivalent):

GPIOA->MODER = ...

M. Briday MICRO 2020/2021 77 / 224

C - Unions

The union keyword in C language allows to use the
same memory location with different forms.

typedef union
{
unsigned int u;
float f;
unsigned char c[4];

} type32;

a type32 variable needs 32 bits that may be
interpreted in different ways:

an unsigned 32 bits value: type32.u

a 32 bits float value (norm ieee754p):
type32.f

an array of 4 unsigned 8-bits values:
type32.c[0]. . .

type32 u
unsigned

int

f
float

c[0]

c[1]

c[2]

c[3]

addresses

0x1234

0x1235

0x1236

0x1237

val

Example:

type32 val;
val.u = 0x12345678; //int
val.c[2] = 0xAA;

⇒ val = 0x1234AA78;

M. Briday MICRO 2020/2021 78 / 224

C - static modificator

Example:

int val1= 0; //global variable : accessible anywhere

void function1()
{
val1++; //val1 = number of calls to the function

}

void function2()
{
int val2 = 0; //local variable
val2 ++; //val2 = 1

} //val2 est destroyed: access only IN function2()

void function3()
{
//init only done the first time
static int val3 = 0;
val3 ++; //val3 = number of calls to the function

} //variable not destroyerd! access only IN function3()

M. Briday MICRO 2020/2021 79 / 224

C - volatile modificator

During code generation, the compiler makes optimizations to speed up

code execution, in particular:

removing unnecessary code;

instantiate variables directly into CPU general purpose registers for a

faster access.

Behavior

The keyword volatile constrains the compiler to effectively perform the

memory access.

Example:

volatile int i;
for(i=0;i<1000;i++);

Without the volatile keyword, le compiler can remove the waitting

loop. . . because it wastes time!

M. Briday MICRO 2020/2021 80 / 224

C - Structure of an embedded code

An embedded code should never terminate. In this way, the main function

has in most cases the following form:

int main()

{

setup(); //function run only once

while(1) {

.. //code executed inside a loop

}

}

function setup() init peripherals;

code inside the loop while(1) is a never-ending process.

M. Briday MICRO 2020/2021 81 / 224

C - To go further. . .

Arduino uses a dialect of C/C++, named wiring. There are few differences

between Wiring and C++.

There are many tutorials and guides for C / C++ / Wiring programming:

C tutorial: http://www.zentut.com/c-tutorial/

C++ tutorial: http://www.cplusplus.com/reference/

Arduino reference: https://www.arduino.cc/reference/en/

M. Briday MICRO 2020/2021 82 / 224

http://www.zentut.com/c-tutorial/
http://www.cplusplus.com/reference/
https://www.arduino.cc/reference/en/

Contents

1 Introduction

2 How to deal only with 0 and 1?

3 Specific C language operations

4 General Purpose I/O

5 Clock Sources

6 Pin muxing

7 Timer

8 Pulse Width Modulation

9 Interrupts

10 External Interrupt Handling

11 Serial Comm. (UART/I2C/SPI)

M. Briday MICRO 2020/2021 83 / 224

parallel ports

Objective

Parallel ports allow to control the pins of the microcontroller in On-Off

mode

Basic example of a garage door:

8Atmel | SMART SAM D10 [PRELIMINARY SUMMARY]
Atmel-42242AS-SAM-D10-Summary_01/2015

4. Pinout

4.1 SAM D10C 14-pin SOIC

4.2 SAM D10D 20-pin SOIC

1

2 PA02

3

PA14 4

PA04

5

PA05

6 9

10

PA08

11

PA09 12

PA15

PA28/

14

13

PA30

PA24RST

PA25

GND

VDDIO/IN/ANA

PA31 87

DIGITAL PIN
ANALOG PIN
OSCILLATOR
GROUND
INPUT SUPPLY
RESET/GPIO PIN

1

2

PA023

PA14

4

PA04

5

PA05

6

9

10

PA08

11

PA09

12

PA15

PA28/

14

13

PA22

PA24

RST

PA25

GND

VDDIO/IN/ANA

PA31 8

7

PA06

PA07

PA16

PA23

PA30

PA03

15

16

17

18

19

20

DIGITAL PIN
ANALOG PIN
OSCILLATOR
GROUND
INPUT SUPPLY
RESET/GPIO PIN

M

m
ur

sol

porte
roulante

capteur niveau bas

capteur niveau haut

interface de
puissance

STOP

5 inputs:

2 high and low level limit
switches;
3 push buttons (human /
Machine interface).

2 outputs:

motor control (up, down,
stop) through a power
interface.

M. Briday MICRO 2020/2021 84 / 224

Parallel port

The access is bi-directionnal and can be configured as:

input (point of view of the µC) to get an information:

limit switches;

state of a push button.

ouput to control an external peripheral:

command a LED;

digital device through several logical lines

It’s a parallel port because it is possible to control several pins at the

same time.

It is also defined as General Purpose I/O.

M. Briday MICRO 2020/2021 85 / 224

I/O architecture on the STM32F303

DocID022558 Rev 8 229/1141

RM0316 General-purpose I/Os (GPIO)

244

GPIOx_BRR registers is to allow atomic read/modify accesses to any of the GPIOx_ODR
registers. In this way, there is no risk of an IRQ occurring between the read and the modify
access.

Figure 40 and Figure 41 show the basic structures of a standard and a 5 V tolerant I/O port
bit, respectively. Table 72 gives the possible port bit configurations.

Figure 40. Basic structure of an I/O port bit

Figure 41. Basic structure of a five-volt tolerant I/O port bit

1. VDD_FT is a potential specific to five-volt tolerant I/Os and different from VDD.

!LTERNATE�FUNCTION�OUTPUT

!LTERNATE�FUNCTION�INPUT

0USH
PULL�
OPEN
DRAIN�OR
DISABLED

)N
PU

T�D
AT

A�
RE

GI
ST

ER

/
UT

PU
T�D

AT
A�

RE
GI

ST
ER

2EAD�WRITE

&ROM�ON
CHIP�
PERIPHERAL

4O�ON
CHIP�
PERIPHERAL

/UTPUT
CONTROL

!NALOG

ON�OFF
0ULL

0ULL
DOWN

ON�OFF

)�/�PIN

6$$

6$$

633

633

�TRIGGER

633

6$$

0ROTECTION
DIODE

0ROTECTION
DIODE

ON�OFF

)NPUT�DRIVER

/UTPUT�DRIVER

UP

0
-/3

.
-/3

2EAD

"
IT�

SE
T�R

ES
ET

�R
EG

IS
TE

RS

7RITE

!NALOG

AI�����

!LTERNATE�FUNCTION�OUTPUT

!LTERNATE�FUNCTION�INPUT

0USH
PULL�
OPEN
DRAIN�OR
DISABLED

/
UT

PU
T�D

AT
A�

RE
GI

ST
ER

2EAD�WRITE

&ROM�ON
CHIP�
PERIPHERAL

4O�ON
CHIP�
PERIPHERAL

/UTPUT
CONTROL

!NALOG

ON�OFF
0ULL

0ULLON�OFF

)�/�PIN

6$$

6$$

633

633

44,�3CHMITT�
�TRIGGER

633

6$$?&4
��	

0ROTECTION
DIODE

0ROTECTION
DIODE

ON�OFF

)NPUT�DRIVER

/UTPUT�DRIVER

DOWN

UP

0
-/3

.
-/3

2EAD

"
IT�

SE
T�R

ES
ET

�R
EG

IS
TE

RS

7RITE

!NALOG

)N
PU

T�D
AT

A�
RE

GI
ST

ER

AI�����B

M. Briday MICRO 2020/2021 86 / 224

I/O ports on STM32-F303-K8

Many ports are available (A to F on the STM32F303K8), but potentially

many more:

This is a 32-bit µC, but can only control up to 16 pins at the same time

ex: pin PA15: on/off pin 15 of port A.

Some pins may have no physical output.

ex: PB2 is not available

logical levels are:

logic 0 ⇒ 0V;

logic 1 ⇒ 3.3V (Warning, not TTL compatible!).

DocID025083 Rev 7 31/121

STM32F303x6/x8 Pinout and pin descriptions

44

4 Pinout and pin descriptions

Figure 4. LQFP32 pinout

1. The above figure shows the package top view.

Figure 5. LQFP48 pinout

1. The above figure shows the package top view.

06�����9�

96
6

%2
2
7�

3%
�

3%
�

3%
�

3%
�

3%
�

3$
��

�� �� �� �� �� �� �� ��

9'' �
�

�

�
�

3)��26&B,1

�

�� 3$��

�

/4)3��

�� 3$��

1567

�

�� 3$��

�

�� 3$��

�� 3$��

3$�
�� 3$�

3$�

��
� �� �� �� �� �� �� ��

3$
�

3$
�

3$
�

3$
�

3%
�

3%
�

96
6

9''

3)��26&B287

9''$�95()�

3$�

3$
�

��

3$�

06Y�����9�

s�
�

s^
^

W�
ϵ

W�
ϴ

�K
Kd

Ϭ

W�
ϳ

W�
ϲ

W�
ϱ

W�
ϰ

W�
ϯ

W�
ϭϱ

W�
ϭϰ

ϰϴ ϰϳ ϰϲ ϰϱ ϰϰ ϰϯ ϰϮ ϰϭ ϰϬ ϯϵ ϯϴ ϯϳ

s��d ϭ ϯϲ s��
W�ϭϯ Ϯ ϯϱ s^^

W�ϭϰͬK^�ϯϮͺ/E ϯ ϯϰ W�ϭϯ
ϰ ϯϯ W�ϭϮ

W&ϬͬK^�ͺ/E ϱ ϯϮ W�ϭϭ
ϲ >Y&Wϰϴ ϯϭ W�ϭϬ

EZ^d ϳ ϯϬ W�ϵ
s^^�ͬsZ�&Ͳ ϴ Ϯϵ W�ϴ

ϵ Ϯϴ W�ϭϱ
W�Ϭ ϭϬ Ϯϳ W�ϭϰ

ϭϭ Ϯϲ W�ϭϯ
ϭϮ Ϯϱ W�ϭϮ

ϭϯ ϭϰ ϭϱ ϭϲ ϭϳ ϭϴ ϭϵ ϮϬ Ϯϭ ϮϮ Ϯϯ Ϯϰ

W�
ϯ

W�
ϰ

W�
ϱ

W�
ϲ

W�
ϳ

W�
Ϭ

W�
ϭ

W�
Ϯ

W�
ϭϬ

W�
ϭϭ s^
^

s�
�

W�ϭϱͬK^�ϯϮͺKhd

W&ϭͬK^�ͺKhd

s���ͬsZ�&н

W�ϭ
W�Ϯ

M. Briday MICRO 2020/2021 87 / 224

I/O ports

Each pin needs a configuration:

reset input floating

input with 3 configurations:

input floating;

input pull-up (a resistor that pulls the electric potential

to VCC)

input pull-down (a resistor that pulls the electric

potential to GND)

output with 2 configurations:

push/pull

open-drain

Each configuration is detailed hereafter.

M. Briday MICRO 2020/2021 88 / 224

3 states output

A 3-state output can be schematized as follows:

A

B

S A
B

S,
A B S

0 0 Z

0 1 0

1 0 Z

1 1 1

If B is not set (B=0), the output is high impedance (Z).

M. Briday MICRO 2020/2021 89 / 224

input with Schmitt trigger

a Schmitt trigger is a comparator circuit with hysteresis:

I O

It is used to ensure the stability of a logic signal when the input (I) is

located between the low (TL) and high (TH) thresholds, zone between 0

and 1 logic.

TL

TH

I

O

logic

M. Briday MICRO 2020/2021 90 / 224

Pin configuration

Each pin of a GPIO port has independant configuration bits:

MODER MODE Register: input/output/alternate function. . .

OTYPER Output TYPE Register: push-pull or open drain

OSPEEDR Output SPEED Register

PUPDR Pull UP / Down Register: enable a pull resistor.

Data registers are:

IDR Input Data Register: get input value of the whole port

ODR Output Data Register: get output value of the whole port

BSRR Bit Set Reset Register: bit access to the port

M. Briday MICRO 2020/2021 91 / 224

Initial state

Each GPIO port is disabled at reset, and a clock source should be given to

the port (see secction 5).
The RCC (Reset and Clock Control) peripheral is used. GPIOs are
connected to the AHB port:

RCC->AHBENR |= RCC_AHBENR_GPIOBEN_Msk; //clock for GPIOB
//wait until GPIOB clock is Ok.
__asm("nop");

You have to replace the ...GPIOBEN... symbol with the appropriate port.

M. Briday MICRO 2020/2021 92 / 224

Output access

1
0

0
1

1
2

0
3

1
4

1
5

0
6

. . .
7

address

out

Up to 16 pins may be controlled in simultaneously. . . ⇔ in parallel!

Warning

Mask operations will be required to avoid overwriting a previous

configuration

M. Briday MICRO 2020/2021 93 / 224

Output access

1
0

0
1

1
2

0
3

1
4

1
5

0
6

. . .
7

address

out

pin 5 of the GPIO

Up to 16 pins may be controlled in simultaneously. . . ⇔ in parallel!

Warning

Mask operations will be required to avoid overwriting a previous

configuration

M. Briday MICRO 2020/2021 93 / 224

Output access

1
0

0
1

1
2

0
3

1
4

1
5

0
6

. . .
7

address

out

pin 5 of the GPIO
0

0
0

1
1

2
1

3
1

4
1

5
0

6

. . .
7

dir

Up to 16 pins may be controlled in simultaneously. . . ⇔ in parallel!

Warning

Mask operations will be required to avoid overwriting a previous

configuration

M. Briday MICRO 2020/2021 93 / 224

Output access

1
0

0
1

1
2

0
3

1
4

1
5

0
6

. . .
7

address

out

0
0

0
1

1
2

1
3

1
4

1
5

0
6

. . .
7

dir

pin of the GPIO

pin of the GPIO

pin of the GPIO

pin of the GPIO

pin of the GPIO

pin of the GPIO

pin of the GPIO

pin of the GPIO

Up to 16 pins may be controlled in simultaneously. . . ⇔ in parallel!

Warning

Mask operations will be required to avoid overwriting a previous

configuration

M. Briday MICRO 2020/2021 93 / 224

MODE Register

MODER (MODE Register) uses 2 bits to configure the mode for each pin:

DocID022558 Rev 8 237/1141

RM0316 General-purpose I/Os (GPIO)

244

11.4 GPIO registers
This section gives a detailed description of the GPIO registers.

For a summary of register bits, register address offsets and reset values, refer to Table 73.

The peripheral registers can be written in word, half word or byte mode.

11.4.1 GPIO port mode register (GPIOx_MODER) (x =A..H)
Address offset:0x00

Reset values:
• 0xA800 0000 for port A
• 0x0000 0280 for port B
• 0x0000 0000 for other ports

Note: In STM32F303xB/xC and STM32F358x devices, bits 10 and 11 of GPIOF_MODER are
reserved and must be kept at reset state.

11.4.2 GPIO port output type register (GPIOx_OTYPER) (x = A..H)
Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MODER15[1:0] MODER14[1:0] MODER13[1:0] MODER12[1:0] MODER11[1:0] MODER10[1:0] MODER9[1:0] MODER8[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MODER7[1:0] MODER6[1:0] MODER5[1:0] MODER4[1:0] MODER3[1:0] MODER2[1:0] MODER1[1:0] MODER0[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 2y+1:2y MODERy[1:0]: Port x configuration bits (y = 0..15)
These bits are written by software to configure the I/O mode.

00: Input mode (reset state)
01: General purpose output mode
10: Alternate function mode
11: Analog mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OT15 OT14 OT13 OT12 OT11 OT10 OT9 OT8 OT7 OT6 OT5 OT4 OT3 OT2 OT1 OT0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

00 Input mode

01 output mode

10 alternate function mode (see section 6)

11 analog mode

M. Briday MICRO 2020/2021 94 / 224

Output type Register

OTYPER Output TYPE Register selects the push-pull or open drain output:

DocID022558 Rev 8 237/1141

RM0316 General-purpose I/Os (GPIO)

244

11.4 GPIO registers
This section gives a detailed description of the GPIO registers.

For a summary of register bits, register address offsets and reset values, refer to Table 73.

The peripheral registers can be written in word, half word or byte mode.

11.4.1 GPIO port mode register (GPIOx_MODER) (x =A..H)
Address offset:0x00

Reset values:
• 0xA800 0000 for port A
• 0x0000 0280 for port B
• 0x0000 0000 for other ports

Note: In STM32F303xB/xC and STM32F358x devices, bits 10 and 11 of GPIOF_MODER are
reserved and must be kept at reset state.

11.4.2 GPIO port output type register (GPIOx_OTYPER) (x = A..H)
Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MODER15[1:0] MODER14[1:0] MODER13[1:0] MODER12[1:0] MODER11[1:0] MODER10[1:0] MODER9[1:0] MODER8[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MODER7[1:0] MODER6[1:0] MODER5[1:0] MODER4[1:0] MODER3[1:0] MODER2[1:0] MODER1[1:0] MODER0[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 2y+1:2y MODERy[1:0]: Port x configuration bits (y = 0..15)
These bits are written by software to configure the I/O mode.

00: Input mode (reset state)
01: General purpose output mode
10: Alternate function mode
11: Analog mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OT15 OT14 OT13 OT12 OT11 OT10 OT9 OT8 OT7 OT6 OT5 OT4 OT3 OT2 OT1 OT0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

0 push-pull

1 open-drain

Only the low 16 bits are used.

M. Briday MICRO 2020/2021 95 / 224

PUPDR Register

PUPDR Pull UP / Down Register

General-purpose I/Os (GPIO) RM0316

238/1141 DocID022558 Rev 8

11.4.3 GPIO port output speed register (GPIOx_OSPEEDR)
(x = A..H)
Address offset: 0x08

Reset value:
• 0x0C00 0000 for port A
• 0x0000 00C0 for port B
• 0x0000 0000 for other ports

11.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR)
(x = A..H)
Address offset: 0x0C

Reset values:
• 0x6400 0000 for port A
• 0x0000 0100 for port B
• 0x0000 0000 for other ports

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 OTy: Port x configuration bits (y = 0..15)
These bits are written by software to configure the I/O output type.

0: Output push-pull (reset state)
1: Output open-drain

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OSPEEDR15
[1:0]

OSPEEDR14
[1:0]

OSPEEDR13
[1:0]

OSPEEDR12
[1:0]

OSPEEDR11
[1:0]

OSPEEDR10
[1:0]

OSPEEDR9
[1:0]

OSPEEDR8
[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OSPEEDR7
[1:0]

OSPEEDR6
[1:0]

OSPEEDR5
[1:0]

OSPEEDR4
[1:0]

OSPEEDR3
[1:0]

OSPEEDR2
[1:0]

OSPEEDR1
[1:0]

OSPEEDR0
[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 2y+1:2y OSPEEDRy[1:0]: Port x configuration bits (y = 0..15)
These bits are written by software to configure the I/O output speed.

x0: Low speed
01: Medium speed
11: High speed

Note: Refer to the device datasheet for the frequency specifications and the power supply
and load conditions for each speed.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PUPDR15[1:0] PUPDR14[1:0] PUPDR13[1:0] PUPDR12[1:0] PUPDR11[1:0] PUPDR10[1:0] PUPDR9[1:0] PUPDR8[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PUPDR7[1:0] PUPDR6[1:0] PUPDR5[1:0] PUPDR4[1:0] PUPDR3[1:0] PUPDR2[1:0] PUPDR1[1:0] PUPDR0[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

00 no pull-up, no pull-down

01 pull-up

10 pull-down

11 reserved

M. Briday MICRO 2020/2021 96 / 224

Output Data Register

ODR Output Data Register controls the output state of the pin:

DocID022558 Rev 8 239/1141

RM0316 General-purpose I/Os (GPIO)

244

11.4.5 GPIO port input data register (GPIOx_IDR) (x = A..H)
Address offset: 0x10

Reset value: 0x0000 XXXX (where X means undefined)

11.4.6 GPIO port output data register (GPIOx_ODR) (x = A..H)
Address offset: 0x14

Reset value: 0x0000 0000

Bits 2y+1:2y PUPDRy[1:0]: Port x configuration bits (y = 0..15)
These bits are written by software to configure the I/O pull-up or pull-down

00: No pull-up, pull-down
01: Pull-up
10: Pull-down
11: Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDR15 IDR14 IDR13 IDR12 IDR11 IDR10 IDR9 IDR8 IDR7 IDR6 IDR5 IDR4 IDR3 IDR2 IDR1 IDR0

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 IDRy: Port input data bit (y = 0..15)
These bits are read-only. They contain the input value of the corresponding I/O port.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ODR15 ODR14 ODR13 ODR12 ODR11 ODR10 ODR9 ODR8 ODR7 ODR6 ODR5 ODR4 ODR3 ODR2 ODR1 ODR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 ODRy: Port output data bit (y = 0..15)
These bits can be read and written by software.
Note: For atomic bit set/reset, the ODR bits can be individually set and/or reset by writing to

the GPIOx_BSRR or GPIOx_BRR registers (x = A..F).

0 output is low

1 output is high

Only the low 16 bits are used.

M. Briday MICRO 2020/2021 97 / 224

Output configuration are:

MODER OTYPER PUPDR state

01 0 00 output - push-pull

01 0 01 output - push-pull + pull-up

01 0 10 output - push-pull + pull-down

01 0 11 reserved

01 1 00 output - open-drain

01 1 01 output - open-drain + pull-up

01 1 10 output - open-drain + pull-down

01 1 11 reserved

M. Briday MICRO 2020/2021 98 / 224

Example: LED access

A led is available on the board, on PB3. This is a basic push-pull

configuration.

Reset state of MODER is 0x0000.

//output configuration
GPIOB->MODER |= 1 << (3*2); //PB3 output
//or (better)
GPIOB->MODER |= 1 << GPIO_MODER_MODER3_Pos; //PB3 output
//or (even better)
GPIOB->MODER &= ∼GPIO_MODER_MODER3_Msk; //reset PB3 mode
GPIOB->MODER |= 1 << GPIO_MODER_MODER3_Pos; //PB3 output

light the LED:

//output high
GPIOB->ODR |= 1 << 3;

turn off the LED:

//output low
GPIOB->ODR &= ∼(1 << 3);

M. Briday MICRO 2020/2021 99 / 224

Selective access to a port

To prevent mask operations, register BSRR (Bit Set/Reset Register) allows

to update a single bit (hardware mask operation)

General-purpose I/Os (GPIO) RM0316

240/1141 DocID022558 Rev 8

11.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A..H)
Address offset: 0x18

Reset value: 0x0000 0000

11.4.8 GPIO port configuration lock register (GPIOx_LCKR)
x= A, B and D in STM32F303xB/C and STM32F358xC devices, x= A, B, C, D and F in
STM32F303x6/8 and STM32F328x8 devices and x = A, B, C, D, E, F, G, H in
STM32F303xD/E devices.

This register is used to lock the configuration of the port bits when a correct write sequence
is applied to bit 16 (LCKK). The value of bits [15:0] is used to lock the configuration of the
GPIO. During the write sequence, the value of LCKR[15:0] must not change. When the
LOCK sequence has been applied on a port bit, the value of this port bit can no longer be
modified until the next MCU reset or peripheral reset.

Note: A specific write sequence is used to write to the GPIOx_LCKR register. Only word access
(32-bit long) is allowed during this locking sequence.

Each lock bit freezes a specific configuration register (control and alternate function
registers).

Address offset: 0x1C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BR15 BR14 BR13 BR12 BR11 BR10 BR9 BR8 BR7 BR6 BR5 BR4 BR3 BR2 BR1 BR0

w w w w w w w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BS15 BS14 BS13 BS12 BS11 BS10 BS9 BS8 BS7 BS6 BS5 BS4 BS3 BS2 BS1 BS0

w w w w w w w w w w w w w w w w

Bits 31:16 BRy: Port x reset bit y (y = 0..15)
These bits are write-only. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODRx bit
1: Resets the corresponding ODRx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 BSy: Port x set bit y (y= 0..15)
These bits are write-only. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODRx bit
1: Sets the corresponding ODRx bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LCKK

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LCK15 LCK14 LCK13 LCK12 LCK11 LCK10 LCK9 LCK8 LCK7 LCK6 LCK5 LCK4 LCK3 LCK2 LCK1 LCK0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

BSX Bit Set

BRX Bit Reset

Hardware mask

Writing a 1 performs the operation (set/reset)

Writing a 0 does not update the GPIO

M. Briday MICRO 2020/2021 100 / 224

Selective access to a port

Moreover, BSRR access is atomic: example:

//switch off LED
GPIOB->ODR &= ∼(1 << 3);

is translated into asm code:

ldr r3, [r1, #20]
bic.w r3, r3, #8
str r3, [r1, #20]

What happens if there is an interrupt between the load and the store

instructions?

M. Briday MICRO 2020/2021 101 / 224

Selective access to a port

Moreover, BSRR access is atomic: example:

//switch off LED
GPIOB->BSRR = 1 << (3+16); //reset PB3

is translated into asm code:

mov.w r4, #524288 ; 0x80000
...
str r4, [r1, #24]

Atomic access

There is no side effect during the access. No need to protect the variable

access.

M. Briday MICRO 2020/2021 102 / 224

Exercice - Bargraph

8 LEDs are connected to the pins PB0 to PB7. The objective is to use LEDs

to represent a value in the form of a bargraph:

val < max/8 max/8 <= val < 2*max/8 val >= max

We consider that the value to be displayed value is most of the time

between 0 and a value max which is a parameter of the procedure.

M. Briday MICRO 2020/2021 103 / 224

Exercise - Bargraph

The routine is bargraph:

void bargraph(unsigned int value, unsigned int max);

Following the value of the parameter value, we have:

if value < max
8 then no led is on;

if max
8 ≤ value < 2max

8 , only the first led is on;

if 2.max
8 ≤ value < 3max

8 , the first 2 leds are on;

...

if value ≥ max, all the leds are on;

Note: You can implement the function:

first listing all cases itertively (list of if)

then with a loop

or directy, by identifying the number of leds to light

M. Briday MICRO 2020/2021 104 / 224

Correction - exercise Bargraph

void bargraph(unsigned int value, unsigned int max)
{
//init
PORTB->MODER |= 0x5555;
unsigned int nbLed = (value*8)/max;
if(nbLed>8) PORTB->BSRR = 0xFF;
else {
const unsigned int mask = (1 << nbLed) - 1;
PORTB->BSRR = mask | (∼mask & 0xFF) << 16;

}
}

M. Briday MICRO 2020/2021 104 / 224

Input

As seen in the GPIO internal structure (slide 86), the input driver:

inserts a Schmitt trigger before the logic part

is configured with MODER (config 00)

may use the push-pull resistors (PUPDR)

M. Briday MICRO 2020/2021 105 / 224

Input Data Register

IDR Input Data Register returns the input state of the pin:

DocID022558 Rev 8 239/1141

RM0316 General-purpose I/Os (GPIO)

244

11.4.5 GPIO port input data register (GPIOx_IDR) (x = A..H)
Address offset: 0x10

Reset value: 0x0000 XXXX (where X means undefined)

11.4.6 GPIO port output data register (GPIOx_ODR) (x = A..H)
Address offset: 0x14

Reset value: 0x0000 0000

Bits 2y+1:2y PUPDRy[1:0]: Port x configuration bits (y = 0..15)
These bits are written by software to configure the I/O pull-up or pull-down

00: No pull-up, pull-down
01: Pull-up
10: Pull-down
11: Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDR15 IDR14 IDR13 IDR12 IDR11 IDR10 IDR9 IDR8 IDR7 IDR6 IDR5 IDR4 IDR3 IDR2 IDR1 IDR0

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 IDRy: Port input data bit (y = 0..15)
These bits are read-only. They contain the input value of the corresponding I/O port.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ODR15 ODR14 ODR13 ODR12 ODR11 ODR10 ODR9 ODR8 ODR7 ODR6 ODR5 ODR4 ODR3 ODR2 ODR1 ODR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 ODRy: Port output data bit (y = 0..15)
These bits can be read and written by software.
Note: For atomic bit set/reset, the ODR bits can be individually set and/or reset by writing to

the GPIOx_BSRR or GPIOx_BRR registers (x = A..F).

0 input is low

1 input is high

Only the low 16 bits are used.

M. Briday MICRO 2020/2021 106 / 224

Exercise - push button

We consider a basic push-button:

PA4

button 1

. What is the configuration of the pin PA4?

. How to read the button state?

M. Briday MICRO 2020/2021 107 / 224

Exercise - push button

If we don’t press the button, the state is in high impedance. The pull-up

resistor is mandatory!

void setup() {
RCC->AHBENR |= RCC_AHBENR_GPIOAEN_Msk; //clock for GPIOA
__asm("nop"); //wait until GPIOA clock is Ok.
GPIOA->MODER &= ∼GPIO_MODER_MODER4_Msk; //PA4 as input (0)
GPIOA->PUPDR &= ∼GPIO_PUPDR_PUPDR4_Msk; //reset pupd for PA4
GPIOA->PUPDR |= 1 << GPIO_PUPDR_PUPDR4_Pos; //pull-up for PA4

}

M. Briday MICRO 2020/2021 108 / 224

Exercise - GPIO driver

The objective of a driver is to hide the complexity of accessing

configuration registers and to offer high-level functions. The 3 functions

to manage inputs/outputs are inspired by the Arduino universe:

pinMode allows to configure a pin (input/output with pull up/down

resistor)

digitalWrite sets an output pin state

digitalRead reads in anput pin state

5 modes are defined (in pinAccess.h):

#define DISABLE 0
#define OUTPUT 1 //only push/pull mode
#define INPUT 2
#define INPUT_PULLUP 3
#define INPUT_PULLDOWN 4

M. Briday MICRO 2020/2021 109 / 224

Exercice - pinMode

Give an implementation of the 3 functions:

int pinMode(GPIO_TypeDef *port,
unsigned char numBit,
unsigned char mode);

int digitalWrite(GPIO_TypeDef *port,
unsigned char numBit,
unsigned char value);

int digitalRead(GPIO_TypeDef *port,
unsigned char numBit);

Where:

port refers to the hardware mapped structure: GPIOA, . . .

numBit is the bit number: 0 to 15

mode is the defined mode (previous slide)

value is the output value (true/false as in C)

Warning

Particular attention should be paid to unexpected values (access to pin 54

for instance. . .).

M. Briday MICRO 2020/2021 110 / 224

Exercice - pinMode

int pinMode(GPIO_TypeDef *port,
unsigned char numBit,
unsigned char mode)

{

//check arguments
if(!IS_GPIO_ALL_INSTANCE(port)) return -1;
if(numBit >) return -1;
//

switch(mode)
{
case DISABLE: //MODER = 0, PUPDR = 0

break;
case OUTPUT: //

break;
...

}
return result;

}

M. Briday MICRO 2020/2021 111 / 224

Correction - pinMode

int pinMode(GPIO_TypeDef *port,
unsigned char numBit,
unsigned char mode)

{
int mask2Bits; //mask for 2bit fields
//check arguments
if(!IS_GPIO_ALL_INSTANCE(port)) return -1;
if(numBit > 15) return -1;
//
mask2Bits = (3 << (numBit*2));
switch(mode)
{
case DISABLE: //MODER = 0, PUPDR = 0
port->MODER &= ∼mask2Bits;
port->PUPDR &= ∼mask2Bits;
break;

case OUTPUT: //MODER = 1, PUPDR = 0
clockForGpio(port);
port->MODER &= ∼mask2Bits;
port->MODER |= (1<<(numBit*2));
port->PUPDR &= ∼mask2Bits;
break;

...
}

M. Briday MICRO 2020/2021 111 / 224

Exercice - digitalWrite

void digitalWrite(GPIO_TypeDef *port,
unsigned char numBit,
unsigned int value)

{
if(!IS_GPIO_ALL_INSTANCE(port)) return;
if(numBit >) return;

}

M. Briday MICRO 2020/2021 112 / 224

Correction - digitalWrite

void digitalWrite(GPIO_TypeDef *port,
unsigned char numBit,
unsigned int value)

{
if(!IS_GPIO_ALL_INSTANCE(port)) return;
if(numBit > 15) return;

if(value) port->BSRR = 1 << numBit;
else port->BSRR = 1 << (numBit+16);

}

M. Briday MICRO 2020/2021 112 / 224

Exercice: Using an FSM

We use here a Finite State Machine (FSM) to get information about a push

button:
Let the following FSM:

OFF

PUSHRELEASE

ON

PB1 == 0

PB1 == 1

PB1 == 1

PB1 == 0

The FSM has 4 states, with 2 of them PUSH and RELEASE only
for 1 cycle.

OFF OFFONPUSH REL. . .

PB1

state

Refresh

period of

the FSM

Exercice GPIO with FSM
Write a program that toggles the state of the LED (PB0) each
time the push button is pushed. The refresh frequency will
be ∼100Hz.

We consider here that there is a function delay(xx) to wait
for xx ms.

M. Briday MICRO 2020/2021 113 / 224

Exercice: Using an FSM

We use here a Finite State Machine (FSM) to get information about a push

button:
Let the following FSM:

OFF

PUSHRELEASE

ON

PB1 == 0

PB1 == 1

PB1 == 1

PB1 == 0

The FSM has 4 states, with 2 of them PUSH and RELEASE only
for 1 cycle.

OFF OFFONPUSH REL. . .

PB1

state

Refresh

period of

the FSM

Exercice GPIO with FSM
Write a program that toggles the state of the LED (PB0) each
time the push button is pushed. The refresh frequency will
be ∼100Hz.

We consider here that there is a function delay(xx) to wait
for xx ms.

M. Briday MICRO 2020/2021 113 / 224

Exercice: Using an FSM

Implementation with a dedicated function:

enum PBState {OFF, PUSH, ON, RELEASE};

//return button state
enum PBState managePB0(){
static enum PBState state =
switch(state) {
case OFF:
break;

case PUSH:
break;

case ON:
break;

case RELEASE:
break;

}
return state;

}

M. Briday MICRO 2020/2021 114 / 224

Exercice: Using an FSM

Implementation with a dedicated function:

enum PBState {OFF, PUSH, ON, RELEASE};

//return button state
enum PBState managePB0(){
static enum PBState state = OFF;
switch(state) {
case OFF: if((GPIOB->IDR & 0x2) == 0) state = PUSH;
break;

case PUSH: state = ON;
break;

case ON: if(GPIOB->IDR & 0x2) state = RELEASE;
break;

case RELEASE: state = OFF;
break;

}
return state;

}

M. Briday MICRO 2020/2021 114 / 224

Contents

1 Introduction

2 How to deal only with 0 and 1?

3 Specific C language operations

4 General Purpose I/O

5 Clock Sources

6 Pin muxing

7 Timer

8 Pulse Width Modulation

9 Interrupts

10 External Interrupt Handling

11 Serial Comm. (UART/I2C/SPI)

M. Briday MICRO 2020/2021 115 / 224

Low Power

Devices are sequential systems that require a clock source.

The current trend of µc founders is to limit consumption as much as

possible. This requirement leads to certain technological choices:

Reduce core consumption

fine management of the core’s sleep modes;
peripheral functions without core use (DMA, sleepWalking,. . .).

reduce the consumption of devices

turn off the power to unused devices;
cut off the clock source;

M. Briday MICRO 2020/2021 116 / 224

Clock Tree of the STM32F303K8

Reset and clock control (RCC) RM0316

126/1141 DocID022558 Rev 8

The RCC feeds the Cortex® System Timer (SysTick) external clock with the AHB clock
(HCLK) divided by 8. The SysTick can work either with this clock or directly with the Cortex®
clock (HCLK), configurable in the SysTick Control and Status Register.

Figure 13. STM32F303xB/C and STM32F358xC clock tree

1. For full details about the internal and external clock source characteristics, please refer to the “Electrical
characteristics” section in your device datasheet.

2. TIM1 and TIM8 can be clocked from the PLLCLKx2 running up to 144 MHz when the system clock source

���

�����0+]
+6(�26&

�

26&B,1 �

26&B287

26&��B,1

26&��B287
�

��0+]
+6,�5&

,:'*&/.
WR�,:'*

3//
[��[����
[��

�

3//08/

$+% $3%�
SUHVFDOHU
�����������

+&/.

3//&/.

WR�$+%�EXV��FRUH��
PHPRU\�DQG�'0$

/6(

/6,

+6,

+6,

+6(

WR�57&

3//65& 6: ��

6<6&/.

57&&/.

57&6(/>���@

WR�7,0����������

�

,I��$3%��SUHVFDOHU�
 ���[��HOVH�[�

)/,7)&/.
WR�)ODVK�SURJUDPPLQJ�LQWHUIDFH

WR�,�&[��[� �����

WR�8�6�$57[��[� ������

/6(
+6,

6<6&/.

��

3&/.�

6<6&/.

+6,

3&/.�

06�����9�

WR�,�6[��[� �����

86%&/.
WR�86%�LQWHUIDFH

WR�FRUWH[�6\VWHP�WLPHU�
)+&/.�&RUWH[�IUHH�
UXQQLQJ�FORFN�
WR�$3%��SHULSKHUDOV

$+%
SUHVFDOHU
����������

&66���������
���

/6(�26&
������N+]

�
/6,�5&�
��N+]

86%
SUHVFDOHU
������

$3%�
SUHVFDOHU
�����������

WR�7,0���������,I��$3%��SUHVFDOHU�
 ���[��HOVH�[�

WR�86$57�

/6(
+6,

6<6&/.
3&/.�

3&/.� WR�$3%��SHULSKHUDOV

7,0���

$'&
3UHVFDOHU
������ WR�$'&[\

�[\� ���������
$'&

3UHVFDOHU
��������������������
�������������

,�665&

6<6&/.

([W��FORFN,�6B&.,1

[�

0&2

0DLQ�FORFN
RXWSXW

�� 3//&/.
+6,

+6(

0&2

6<6&/.

/6,

/6(

M. Briday MICRO 2020/2021 117 / 224

Clock Tree

Clocks should be configured at startup for

the main core clock;

devices clocks;

Let’s have a look at the SystemInit() function.

M. Briday MICRO 2020/2021 118 / 224

Contents

1 Introduction

2 How to deal only with 0 and 1?

3 Specific C language operations

4 General Purpose I/O

5 Clock Sources

6 Pin muxing

7 Timer

8 Pulse Width Modulation

9 Interrupts

10 External Interrupt Handling

11 Serial Comm. (UART/I2C/SPI)

M. Briday MICRO 2020/2021 119 / 224

Principle

Some devices use pins of the microcontroller as input or output.

By default, a pin is used as a GPIO (digital input/output).

We should know which device will use the pin

Some devices may have pins that are driven to different physical
pins (easier electronic schema)

example: The first pin of the serial communication of this µC
(SAMD21J18A) can be affected to physical pins PA0 or PA16.

13Atmel | SMART SAM D21 [DATASHEET]
Atmel-42181E–SAM-D21_Datasheet–02/2015

4. Pinout

4.1 SAM D21J

4.1.1 QFN64 / TQFP64

PA00 1
PA01 2
PA02 3
PA03 4
PB04 5
PB05 6

GNDANA 7
VDDANA 8

PB06 9
PB07 10
PB08 11
PB09 12
PA04 13
PA05 14
PA06 15
PA07 16

PA
08

17
PA

09
18

PA
10

19
PA

11
20

VD
D

IO
21

G
N

D
22

PB
10

23
PB

11
24

PB
12

25
PB

13
26

PB
14

27
PB

15
28

PA
12

29
PA

13
30

PA
14

31
PA

15
32

VDDIO48
GND47
PA2546
PA2445
PA2344
PA2243
PA2142
PA2041
PB1740
PB1639
PA1938
PA1837
PA1736
PA1635
VDDIO34
GND33

PB
22

49
PB

23
50

PA
27

51
R

ES
ET

N
52

PA
28

53
G

N
D

54
VD

D
C

O
R

E
55

VD
D

IN
56

PA
30

57
PA

31
58

PB
30

59
PB

31
60

PB
00

61
PB

01
62

PB
02

63
PB

03
64

DIGITAL PIN
ANALOG PIN
OSCILLATOR
GROUND

INPUT SUPPLY
REGULATED OUTPUT SUPPLY
RESET PIN

M. Briday MICRO 2020/2021 120 / 224

Hardware part. . .

DocID022558 Rev 8 235/1141

RM0316 General-purpose I/Os (GPIO)

244

Figure 43. Output configuration

11.3.11 Alternate function configuration
When the I/O port is programmed as alternate function:
• The output buffer can be configured in open-drain or push-pull mode
• The output buffer is driven by the signals coming from the peripheral (transmitter

enable and data)
• The Schmitt trigger input is activated
• The weak pull-up and pull-down resistors are activated or not depending on the value

in the GPIOx_PUPDR register
• The data present on the I/O pin are sampled into the input data register every AHB

clock cycle
• A read access to the input data register gets the I/O state

Figure 44 shows the Alternate function configuration of the I/O port bit.

Figure 44. Alternate function configuration

0USH
PULL�OR
/PEN
DRAIN

/UTPUT
CONTROL

6$$

633

44,�3CHMITT�
�TRIGGER

ON

)NPUT�DRIVER

/UTPUT�DRIVER

0
-/3

.
-/3

)N
PU

T�D
AT

A�
RE

GI
ST

ER

/
UT

PU
T�D

AT
A�

RE
GI

ST
ER

2EAD�WRITE

2EAD

"
IT�

SE
T�R

ES
ET

�R
EG

IS
TE

RS

7RITE
ON�OFF

PULL

PULL

ON�OFF

6$$

633 633

6$$

PROTECTION
DIODE

PROTECTION
DIODEDOWN

UP
)�/�PIN

AI�����B

!LTERNATE�FUNCTION�OUTPUT

!LTERNATE�FUNCTION�INPUT

PUSH
PULL�OR
OPEN
DRAIN

&ROM�ON
CHIP�
PERIPHERAL

4O�ON
CHIP�
PERIPHERAL

/UTPUT
CONTROL

6$$

633

44,�3CHMITT�
�TRIGGER

ON

)NPUT�DRIVER

/UTPUT�DRIVER

0
-/3

.
-/3

)N
PU

T�D
AT

A�
RE

GI
ST

ER

/
UT

PU
T�D

AT
A�

RE
GI

ST
ER

2EAD�WRITE

2EAD

"
IT�

SE
T�R

ES
ET

�R
EG

IS
TE

RS

7RITE

ON�OFF

ON�OFF

6$$

633 633

6$$

PROTECTION
DIODE

PROTECTION
DIODE

0ULL

0ULL

)�/�PIN

DOWN

UP

AI�����B

M. Briday MICRO 2020/2021 121 / 224

. . . and software part

The founder allows up to 16 alternate configurations for each pin, called

AF0 to AF15.

2 registers should be updated:

MODER register (slide 94), with configuration 10

AFRL (and AFRH) that gives the alternate configuration number, from

0 (AF0) to 15 (AF15), for respectively the lowest 8 pin numbers and

the highest ones.

DocID022558 Rev 8 241/1141

RM0316 General-purpose I/Os (GPIO)

244

11.4.9 GPIO alternate function low register (GPIOx_AFRL)
(x = A..H)
Address offset: 0x20

Reset value: 0x0000 0000

Bits 31:17 Reserved, must be kept at reset value.

Bit 16 LCKK: Lock key
This bit can be read any time. It can only be modified using the lock key write sequence.

0: Port configuration lock key not active
1: Port configuration lock key active. The GPIOx_LCKR register is locked until the next MCU
reset or peripheral reset.
LOCK key write sequence:
WR LCKR[16] = ‘1’ + LCKR[15:0]
WR LCKR[16] = ‘0’ + LCKR[15:0]
WR LCKR[16] = ‘1’ + LCKR[15:0]
RD LCKR
RD LCKR[16] = ‘1’ (this read operation is optional but it confirms that the lock is active)

Note: During the LOCK key write sequence, the value of LCK[15:0] must not change.
Any error in the lock sequence aborts the lock.
After the first lock sequence on any bit of the port, any read access on the LCKK bit will
return ‘1’ until the next MCU reset or peripheral reset.

Bits 15:0 LCKy: Port x lock bit y (y= 0..15)
These bits are read/write but can only be written when the LCKK bit is ‘0.

0: Port configuration not locked
1: Port configuration locked

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

AFR7[3:0] AFR6[3:0] AFR5[3:0] AFR4[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AFR3[3:0] AFR2[3:0] AFR1[3:0] AFR0[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 AFRy[3:0]: Alternate function selection for port x pin y (y = 0..7)
These bits are written by software to configure alternate function I/Os

AFRy selection:
0000: AF0
0001: AF1
0010: AF2
0011: AF3
0100: AF4
0101: AF5
0110: AF6
0111: AF7

1000: AF8
1001: AF9
1010: AF10
1011: AF11
1100: AF12
1101: AF13
1110: AF14
1111: AF15

M. Briday MICRO 2020/2021 122 / 224

Contents

1 Introduction

2 How to deal only with 0 and 1?

3 Specific C language operations

4 General Purpose I/O

5 Clock Sources

6 Pin muxing

7 Timer

8 Pulse Width Modulation

9 Interrupts

10 External Interrupt Handling

11 Serial Comm. (UART/I2C/SPI)

M. Briday MICRO 2020/2021 123 / 224

Objective

Provide a time base (timer):

perform a precise standby function;
generate a periodic behavior such as flashing an LED, sending a
periodic message, . . .

Counting events (counter):

number of engine revolutions in a car

With some additional logic, create more advanced functions such as:

timestamp with a capture input;
with a comparator, a Pulse Width Modulation (PWM) signal (→ chapter
p. 8);
decode a quadrature signal (encoder sensor);
measurement of the width of a pulse (high state duration).
. . .

M. Briday MICRO 2020/2021 124 / 224

Basic principle

the timer value increases/decreases periodically;

When the timer reaches its maximum value, its value is reloaded (not

necessarily at 0)

timer

time

flag flag

max

0
resolution

M. Briday MICRO 2020/2021 125 / 224

Timer resolution

the timer resolution is the time required to change its value by one

unit;

A timer usually offers a prescaler of the input frequency to set the
resolution:

If the frequency divider is high, the timer resolution is higher and the
timer takes longer to reach its maximum value;
If, on the other hand, the frequency divider is low, the timer resolution
is smaller, and the time measurement is more accurate.

The presclare makes no sense if an external signal is used as input.

counter
timer

Prescalerinternal clock

external signal

M. Briday MICRO 2020/2021 126 / 224

timer overflow

A timer overflows when:

its value gets from its maximal value to its reload value (overflow),

when counting;

its value gets from 0 to its reload value (underflow), when decounting

A flag signals that an overflow/underflow has occured. This flag can be

used either under interrupt (see chapter p.1), or with software (polling).

timer

time

flag flag

max

0

M. Briday MICRO 2020/2021 127 / 224

Capacity

The capacity of the timer is the set of values it can take. A N-bits timer

have its values in:

[0; 2N − 1]

In general, values for N are:

8 bits⇒ from 0 to 255;

16 bits⇒ from 0 to 65 535;

32 bits⇒ from 0 to 4 294 967 295;

64 bits⇒ from 0 to . . . (read only usage).

We will use 16-bits and 32-bits timers here.

M. Briday MICRO 2020/2021 128 / 224

Different timer kind

On the STM32F303 target, different kind of timers are provided from basic

to more advances timers:

basic timers (low complexity, limited features): TIM6, TIM7

General purpose timers (medium complexity): TIM2, TIM3

General purpose timers (other features): TIM15, TIM16 and TIM17

Advanced purpose timers (many features): TIM1, TIM8 and TIM20

M. Briday MICRO 2020/2021 129 / 224

Basic timers TIM6, TIM7

16 bit, only up counter, with auto-reload

can be linked to the DAC

Basic timers (TIM6/TIM7) RM0316

670/1141 DocID022558 Rev 8

22 Basic timers (TIM6/TIM7)

22.1 TIM6/TIM7 introduction
The basic timers TIM6 and TIM7 consist of a 16-bit auto-reload counter driven by a
programmable prescaler.

They may be used as generic timers for time-base generation but they are also specifically
used to drive the digital-to-analog converter (DAC). In fact, the timers are internally
connected to the DAC and are able to drive it through their trigger outputs.

The timers are completely independent, and do not share any resources.

22.2 TIM6/TIM7 main features
Basic timer (TIM6/TIM7) features include:
• 16-bit auto-reload upcounter
• 16-bit programmable prescaler used to divide (also “on the fly”) the counter clock

frequency by any factor between 1 and 65535
• Synchronization circuit to trigger the DAC
• Interrupt/DMA generation on the update event: counter overflow

Figure 246. Basic timer block diagram

06�����9�

,QWHUQDO�FORFN��&.B,17�

$XWR�UHORDG�UHJLVWHU

&17�FRXQWHU�
&.B36& &.B&17

6WRS��FOHDU�RU�XS

8,

8

8

1RWHV�

5HJ 3UHORDG�UHJLVWHUV�WUDQVIHUUHG
WR�DFWLYH�UHJLVWHUV�RQ�8�HYHQW
DFFRUGLQJ�WR�FRQWURO�ELW

(YHQW

,QWHUUXSW�	�'0$�RXWSXW

36&
SUHVFDOHU

7ULJJHU�
FRQWUROOHU

5HVHW��HQDEOH��&RXQW

7,0[&/.�IURP�5&&

75*2 WR�'$&

&RQWURO

M. Briday MICRO 2020/2021 130 / 224

Clock Tree

The main input clock for each timer should be first enabled (see p. 117):

//input clock = 64MHz.
RCC->APB1ENR |= RCC_APB1ENR_TIM6EN;
__asm("nop");
//reset peripheral (mandatory!)
RCC->APB1RSTR |= RCC_APB1RSTR_TIM6RST;
RCC->APB1RSTR &= ∼RCC_APB1RSTR_TIM6RST;
__asm("nop");

M. Briday MICRO 2020/2021 131 / 224

Control register CRx

CR1 Control Register 1

DocID022558 Rev 8 677/1141

RM0316 Basic timers (TIM6/TIM7)

682

Figure 255. Control circuit in normal mode, internal clock divided by 1

22.3.5 Debug mode
When the microcontroller enters the debug mode (Cortex-M4®F core - halted), the TIMx
counter either continues to work normally or stops, depending on the DBG_TIMx_STOP
configuration bit in the DBG module. For more details, refer to Section 33.16.2: Debug
support for timers, watchdog, bxCAN and I2C.

22.4 TIM6/TIM7 registers
Refer to Section 2.1 on page 46 for a list of abbreviations used in register descriptions.

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

22.4.1 TIM6/TIM7 control register 1 (TIMx_CR1)
Address offset: 0x00

Reset value: 0x0000

,QWHUQDO�FORFN

&RXQWHU�FORFN� �&.B&17� �&.B36&

&RXQWHU�UHJLVWHU

&(1 &17B(1

8*

&17B,1,7

06�����9�

�� �� �� �� �� �� ���� �� �� �� ���� ��

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res Res Res Res
UIF
RE-
MAP

Res Res Res ARPE Res Res Res OPM URS UDIS CEN

rw rw rw rw rw rw

Bits 15:12 Reserved, must be kept at reset value.

Bit 11 UIFREMAP: UIF status bit remapping
0: No remapping. UIF status bit is not copied to TIMx_CNT register bit 31.
1: Remapping enabled. UIF status bit is copied to TIMx_CNT register bit 31.

Bits 10:8 Reserved, must be kept at reset value.

OPM One Pulse Mode: counter stops at next overflow

CEN Counter enable: should be set to 1

CR2 Control Register 2

DocID022558 Rev 8 679/1141

RM0316 Basic timers (TIM6/TIM7)

682

22.4.2 TIM6/TIM7 control register 2 (TIMx_CR2)
Address offset: 0x04

Reset value: 0x0000

22.4.3 TIM6/TIM7 DMA/Interrupt enable register (TIMx_DIER)
Address offset: 0x0C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res Res Res Res Res Res Res Res Res MMS[2:0] Res Res Res Res

rw rw rw

Bits 15:7 Reserved, must be kept at reset value.

Bits 6:4 MMS: Master mode selection
These bits are used to select the information to be sent in master mode to slave timers for
synchronization (TRGO). The combination is as follows:

000: Reset - the UG bit from the TIMx_EGR register is used as a trigger output (TRGO). If
reset is generated by the trigger input (slave mode controller configured in reset mode) then
the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter enable signal, CNT_EN, is used as a trigger output (TRGO). It is
useful to start several timers at the same time or to control a window in which a slave timer
is enabled. The Counter Enable signal is generated by a logic OR between CEN control bit
and the trigger input when configured in gated mode.
When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO,
except if the master/slave mode is selected (see the MSM bit description in the TIMx_SMCR
register).
010: Update - The update event is selected as a trigger output (TRGO). For instance a
master timer can then be used as a prescaler for a slave timer.

Note: The clock of the slave timer or ADC must be enabled prior to receive events from the
master timer, and must not be changed on-the-fly while triggers are received from the
master timer.

Bits 3:0 Reserved, must be kept at reset value.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res Res Res Res Res Res Res UDE Res Res Res Res Res Res Res UIE

rw rw

Bits 15:9 Reserved, must be kept at reset value.

Bit 8 UDE: Update DMA request enable
0: Update DMA request disabled.
1: Update DMA request enabled.

Bits 7:1 Reserved, must be kept at reset value.

Bit 0 UIE: Update interrupt enable
0: Update interrupt disabled.
1: Update interrupt enabled.

Not used here.

M. Briday MICRO 2020/2021 132 / 224

Prescaler Register PSC

DocID022558 Rev 8 681/1141

RM0316 Basic timers (TIM6/TIM7)

682

22.4.7 TIM6/TIM7 prescaler (TIMx_PSC)
Address offset: 0x28

Reset value: 0x0000

22.4.8 TIM6/TIM7 auto-reload register (TIMx_ARR)
Address offset: 0x2C

Reset value: 0xFFFF

Bit 31 UIFCPY: UIF Copy
This bit is a read-only copy of the UIF bit of the TIMx_ISR register. If the UIFREMAP bit in
TIMx_CR1 is reset, bit 31 is reserved and read as 0.

Bits 30:16 Reserved, must be kept at reset value.

Bits 15:0 CNT[15:0]: Counter value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value
The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
PSC contains the value to be loaded into the active prescaler register at each update event.

(including when the counter is cleared through UG bit of TIMx_EGR register or through
trigger controller when configured in “reset mode”).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Prescaler value
ARR is the value to be loaded into the actual auto-reload register.
Refer to Section 22.3.1: Time-base unit on page 671 for more details about ARR update and
behavior.
The counter is blocked while the auto-reload value is null.

The PSC prescaler register is a 16-bit register that divides the input

frequency by a programmable factor from 1 to 65535:

fCNT =
fPSC

PSC[15 : 0] + 1

ex: if PSC=63, the input frequency for the counter CNT is 1MHz.

Note:On most micro-controllers, the prescaler is a power of 2

M. Briday MICRO 2020/2021 133 / 224

ARR / CNT

Basic timers (TIM6/TIM7) RM0316

680/1141 DocID022558 Rev 8

22.4.4 TIM6/TIM7 status register (TIMx_SR)
Address offset: 0x10

Reset value: 0x0000

22.4.5 TIM6/TIM7 event generation register (TIMx_EGR)
Address offset: 0x14

Reset value: 0x0000

22.4.6 TIM6/TIM7 counter (TIMx_CNT)
Address offset: 0x24

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res UIF

rc_w0

Bits 15:1 Reserved, must be kept at reset value.

Bit 0 UIF: Update interrupt flag
This bit is set by hardware on an update event. It is cleared by software.

0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– At overflow or underflow regarding the repetition counter value and if UDIS = 0 in the
TIMx_CR1 register.

– When CNT is reinitialized by software using the UG bit in the TIMx_EGR register, if URS = 0
and UDIS = 0 in the TIMx_CR1 register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res UG

w

Bits 15:1 Reserved, must be kept at reset value.

Bit 0 UG: Update generation
This bit can be set by software, it is automatically cleared by hardware.

0: No action.
1: Re-initializes the timer counter and generates an update of the registers. Note that the
prescaler counter is cleared too (but the prescaler ratio is not affected).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

UIF
CPY Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

The CNT register contains the current value of the timer (16-bit R/W

register).

DocID022558 Rev 8 681/1141

RM0316 Basic timers (TIM6/TIM7)

682

22.4.7 TIM6/TIM7 prescaler (TIMx_PSC)
Address offset: 0x28

Reset value: 0x0000

22.4.8 TIM6/TIM7 auto-reload register (TIMx_ARR)
Address offset: 0x2C

Reset value: 0xFFFF

Bit 31 UIFCPY: UIF Copy
This bit is a read-only copy of the UIF bit of the TIMx_ISR register. If the UIFREMAP bit in
TIMx_CR1 is reset, bit 31 is reserved and read as 0.

Bits 30:16 Reserved, must be kept at reset value.

Bits 15:0 CNT[15:0]: Counter value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value
The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
PSC contains the value to be loaded into the active prescaler register at each update event.

(including when the counter is cleared through UG bit of TIMx_EGR register or through
trigger controller when configured in “reset mode”).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Prescaler value
ARR is the value to be loaded into the actual auto-reload register.
Refer to Section 22.3.1: Time-base unit on page 671 for more details about ARR update and
behavior.
The counter is blocked while the auto-reload value is null.

The ARR (Auto Reload Register) is the max value of the CNT register: the

CNT register counts from 0 to ARR (ARR+1 units).

M. Briday MICRO 2020/2021 134 / 224

Status Register SR

Basic timers (TIM6/TIM7) RM0316

680/1141 DocID022558 Rev 8

22.4.4 TIM6/TIM7 status register (TIMx_SR)
Address offset: 0x10

Reset value: 0x0000

22.4.5 TIM6/TIM7 event generation register (TIMx_EGR)
Address offset: 0x14

Reset value: 0x0000

22.4.6 TIM6/TIM7 counter (TIMx_CNT)
Address offset: 0x24

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res UIF

rc_w0

Bits 15:1 Reserved, must be kept at reset value.

Bit 0 UIF: Update interrupt flag
This bit is set by hardware on an update event. It is cleared by software.

0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– At overflow or underflow regarding the repetition counter value and if UDIS = 0 in the
TIMx_CR1 register.

– When CNT is reinitialized by software using the UG bit in the TIMx_EGR register, if URS = 0
and UDIS = 0 in the TIMx_CR1 register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res UG

w

Bits 15:1 Reserved, must be kept at reset value.

Bit 0 UG: Update generation
This bit can be set by software, it is automatically cleared by hardware.

0: No action.
1: Re-initializes the timer counter and generates an update of the registers. Note that the
prescaler counter is cleared too (but the prescaler ratio is not affected).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

UIF
CPY Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

UIF the flag is set when the timer overflows (from ARR to 0):

Update Interrupt Flag.

The flag should be reset by software:

TIM6->SR = 0; //reset UIF

M. Briday MICRO 2020/2021 135 / 224

Registers summary

register field bit function

CR1 CEN 0 Count ENable.

PSC prescaler (frequency divider)

SR UIF 0 overflow flag

CNT timer current value

ARR Auto Reload Register

CNT

time

UIF=1 UIF=1

resolution

ARR

0

M. Briday MICRO 2020/2021 136 / 224

Exercice - Implement a delay function

We want ro implement a function that performs a simple delay. The input

clock is set to 64MHz.

. What is the max delay that can be done (with one timer loop only)?

. Implement a function that simply waits:

//ms in milli-seconds
//ms should be <= 60 000
void delay(unsigned int ms);

M. Briday MICRO 2020/2021 137 / 224

exercice 1

void delay(unsigned int ms);
{

}

M. Briday MICRO 2020/2021 138 / 224

Correction - exercice 1

void delay(unsigned int ms);
{
//check argument
int arr = ms;
if(arr > 60000) arr = 60000;

//input clock = 64MHz.
RCC->APB1ENR |= RCC_APB1ENR_TIM6EN;
__asm("nop");
//reset peripheral (mandatory!)
RCC->APB1RSTR |= RCC_APB1RSTR_TIM6RST;
RCC->APB1RSTR &= ∼RCC_APB1RSTR_TIM6RST;
__asm("nop");

TIM6->PSC = 64000-1; //prescaler : tick@1ms
TIM6->CNT = 0;
TIM6->ARR = arr-1; //auto-reload: counts 100 ticks
TIM6->CR1 |= TIM_CR1_CEN; //config reg : enable
while(! (TIM6->SR & TIM_SR_UIF)); //wait...

}

M. Briday MICRO 2020/2021 138 / 224

Synchronization

Objective

Include the calculation inside the waiting function, so as not to

accumulate delays.

Example: a process requires from 1 to 3 ms, and should be repeated each

10ms. . .

CNT

time

UIF=1 UIF=1

resolution

ARR

0

processing
wait wait

M. Briday MICRO 2020/2021 139 / 224

Synchronization

In the synchronization loop:

reinit the overflow flag;

insert here the processing part, while the timer is counting;

synchronization part: wait until the overflow flag occurs

note:

On some MCU, the overflow value is hardwired to the 65536 (on 16-bits).

So you will have to update the timer value so that it performs the required

number of steps.

M. Briday MICRO 2020/2021 140 / 224

Example

We have a stepper motor to control, and a function motorStep() is

available to send a pulse to the power interface. We have to call this

function at a frequency of 500Hz, so that the motor turns in continuous

mode.

We also consider that there is another function otherStuff() that should

be called at the same frequency. The duration of this function is set

between 0.1 and 1.3ms.

. implement the setup() function to initialize the timer (we will use a

tick@1µs)

. implement the control loop (inside main()) that calls periodically

these 2 control functions.

M. Briday MICRO 2020/2021 141 / 224

Correction - synchronization

void setup(void) {

}

int main() {

}

M. Briday MICRO 2020/2021 142 / 224

Correction - synchronization

void setup(void) {
RCC->APB1ENR |= RCC_APB1ENR_TIM6EN;
__asm("nop");
//reset peripheral (mandatory!)
RCC->APB1RSTR |= RCC_APB1RSTR_TIM6RST;
RCC->APB1RSTR &= ∼RCC_APB1RSTR_TIM6RST;
__asm("nop");

TIM6->PSC = 64-1; // prescaler : tick@1us
TIM6->CR1 |= TIM_CR1_CEN; // config reg : enable
TIM6->ARR = 2000-1; // each 2ms (2000 ticks)

}

int main() {
setup();
while(1) {
TIM6->SR &= ∼TIM_SR_UIF; //reinit overflow flag
motorUStep(); //application stuff, when the
otherStuff(); //timer counts up
while(! (TIM6->SR & TIM_SR_UIF)); //synchro

}
}

M. Briday MICRO 2020/2021 142 / 224

Contents

1 Introduction

2 How to deal only with 0 and 1?

3 Specific C language operations

4 General Purpose I/O

5 Clock Sources

6 Pin muxing

7 Timer

8 Pulse Width Modulation

9 Interrupts

10 External Interrupt Handling

11 Serial Comm. (UART/I2C/SPI)

M. Briday MICRO 2020/2021 143 / 224

Objective

Extend timer possibilities with:

the timer of chapter p. 7;

a comparator: it is a mechanism that will continuously compare the

value of a register with the value of the timer;

possibly a physical output (on a µC pin).

This system will mainly be used to generate a digital output with a Pulse

Width Modulation (PWM), in an autonomous way.

M. Briday MICRO 2020/2021 144 / 224

Principle

At all times, the value in the register CCRx is compared with the current

value of the timer.

When the 2 values are matching, the flag CCxIF is set.

CNT

time

UIF=1 UIF=1

resolution

CCRx

CCxIF=1 CCxIF=1

ARR

0

M. Briday MICRO 2020/2021 145 / 224

Basic block diagram

register
CNT

register
CCRx

= ?

Waveform
Generator

CCxIF

pin TIMy_CHx

Timer TIMy

the PWM is used to control many types of actuators:

DC Motor (with power mosfet)

stepper motor

brushless motors

LEDs

. . .
M. Briday MICRO 2020/2021 146 / 224

Basic block diagram

register
CNT

register
CCRx

= ?

Waveform
Generator

CCxIF

pin TIMy_CHx

Timer TIMy

4 channels are associated to timers TIM2/3/4, but none for basic timers

TIM6/7.

M. Briday MICRO 2020/2021 147 / 224

Block Diagram of TIM2/3/4
General-purpose timers (TIM2/TIM3/TIM4) RM0316

602/1141 DocID022558 Rev 8

Figure 197. General-purpose timer block diagram

8

8

8

&&�,

&&�,

7ULJJHU
FRQWUROOHU

���

6WRS��FOHDU�RU�XS�GRZQ

7,�)3�
7,�)3�

,75�
,75�
,75� 75*,

2XWSXW
FRQWURO

75*2

2&�5()

2&�5()

8

8,

5HVHW��HQDEOH��XS��FRXQW

&.B36&

,&�

,&� ,&�36

,&�36
7,�)3�

7*,

75&

75&

,75
75&

7,�)B('

&&�,

&&�,

7,�)3�

7,�)3�
7,�)3�

7,�

7,�

7,0[B&+�

7,0[B&+�

2&�

2&� 7,0[B&+�

7,0[B&+�

WR�RWKHU�WLPHUV
WR�'$&�$'&

6ODYH�
FRQWUROOHU�
PRGH

36&
SUHVFDOHU &17�FRXQWHU

,QWHUQDO�FORFN��&.B,17�

&.B&17

7,0[&/.�IURP�5&&

,75�

06�����9�

;25
,QSXW�ILOWHU�	�
HGJH�GHWHFWRU

� �&DSWXUH�&RPSDUH���UHJLVWHU

1RWHV�

5HJ 3UHORDG�UHJLVWHUV�WUDQVIHUUHG
WR�DFWLYH�UHJLVWHUV�RQ�8�HYHQW
DFFRUGLQJ�WR�FRQWURO�ELW

(YHQW

,QWHUUXSW�	�'0$�RXWSXW

$XWR�UHORDG�UHJLVWHU

&DSWXUH�&RPSDUH���UHJLVWHU3UHVFDOHU

3UHVFDOHU

,QSXW�ILOWHU�	�
HGJH�GHWHFWRU

2XWSXW
FRQWURO

8

8

&&�,

&&�,

2XWSXW
FRQWURO

2&�5()

2&�5()

,&�

,&� ,&�36

,&�36

7,�)3�
7,�)3�

7,0[B&+�

7,0[B&+�

2&�

2&� 7,0[B&+�

7,0[B&+�,QSXW�ILOWHU�	�
HGJH�GHWHFWRU

� �&DSWXUH�&RPSDUH���UHJLVWHU

&DSWXUH�&RPSDUH���UHJLVWHU3UHVFDOHU

3UHVFDOHU

,QSXW�ILOWHU�	�
HGJH�GHWHFWRU

2XWSXW
FRQWURO

75&

7,�)3�
7,�)3�

75&

&&�,

&&�,

7,�

7,�

(QFRGHU
LQWHUIDFH

7,0[B(75 ,QSXW�ILOWHU3RODULW\�VHOHFWLRQ�	�HGJH
GHWHFWRU�	�SUHVFDOHU

(75 (753

(75)

(75)

M. Briday MICRO 2020/2021 148 / 224

PWM mode edge-aligned

The simplest mode is edge-aligned, where:

the output is set after an overflow;

the output is cleared when the comparison matches.

CNT

time

UIF=1 UIF=1

CCRx

CCxIF=1 CCxIF=1 CCxIF=1

ARR

0
TIMy_CHx

M. Briday MICRO 2020/2021 149 / 224

PWM mode centered-aligned

In this mode the timer counts up and down, alternatively.

All the PWM channels are synchronized.

CNT

time

CCRx

CCxIF=1 CCxIF=1 CCxIF=1

ARR

0
TIMy_CHx

M. Briday MICRO 2020/2021 150 / 224

Usage

As a consequence

the PWM frequency is defined only from the timer frequency

For instance, with a 1MHz timer (prescaler=63), with ARR=99 (100

ticks):

⇒ resolution is 1µs;
⇒ PWM frequency is 1000000

100 = 10KHz

the duty cycle is defined with the comparison register CCRx:

The duty cycle is CCRx
ARR+1 = CCRx

100 (often defined in %).

key interest

Once configured, the signal on the pin TIMy_CHx evolves autonomously,

i.e. without any software.

M. Briday MICRO 2020/2021 151 / 224

Configuration

The configuration is done in three steps:

pin (alternative config.). See p. 6;

timer (⇒ PWM frequency), see p. 7;

output comparison (⇒ PWM duty cycle).

M. Briday MICRO 2020/2021 152 / 224

Control register CRx

CR1 Control Register 1

DocID022558 Rev 8 647/1141

RM0316 General-purpose timers (TIM2/TIM3/TIM4)

669

21.4 TIM2/TIM3/TIM4 registers
Refer to Section 2.1 for a list of abbreviations used in register descriptions.

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

21.4.1 TIMx control register 1 (TIMx_CR1)
Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res.
UIF
RE-
MAP

Res. CKD[1:0] ARPE CMS DIR OPM URS UDIS CEN

rw rw rw rw rw rw rw rw rw rw rw

Bits 15:12 Reserved, must be kept at reset value.

Bit 11 UIFREMAP: UIF status bit remapping
0: No remapping. UIF status bit is not copied to TIMx_CNT register bit 31.
1: Remapping enabled. UIF status bit is copied to TIMx_CNT register bit 31.

Bit 10 Reserved, must be kept at reset value.

Bits 9:8 CKD: Clock division
This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and
sampling clock used by the digital filters (ETR, TIx),
00: tDTS = tCK_INT
01: tDTS = 2 × tCK_INT
10: tDTS = 4 × tCK_INT
11: Reserved

Bit 7 ARPE: Auto-reload preload enable
0: TIMx_ARR register is not buffered
1: TIMx_ARR register is buffered

Bits 6:5 CMS: Center-aligned mode selection
00: Edge-aligned mode. The counter counts up or down depending on the direction bit
(DIR).
01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting down.
10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting up.
11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
both when the counter is counting up or down.

Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as
the counter is enabled (CEN=1)

Bit 4 DIR: Direction
0: Counter used as upcounter
1: Counter used as downcounter

Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder
mode.

OPM One Pulse Mode: counter stops at next overflow

CEN Counter enable: should be set to 1

CMS Center-aligned mode selection

00 edge-aligned mode

01 centered-aligned mode 1: comparison

interrupt flag only when counting down

10 centered-aligned mode 2: comparison

interrupt flag only when counting up

01 centered-aligned mode 3: comparison

interrupt flag when counting up and down

M. Briday MICRO 2020/2021 153 / 224

Capture Compare Mode Register CCMRx

CCMRx Capture Compare Mode Register x

General-purpose timers (TIM2/TIM3/TIM4) RM0316

656/1141 DocID022558 Rev 8

21.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1)
Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits of this register have a different function in input and in output mode. For a given bit,
OCxx describes its function when the channel is configured in output, ICxx describes its
function when the channel is configured in input. So you must take care that the same bit
can have a different meaning for the input stage and for the output stage.

Output compare mode

Bit 2 CC2G: Capture/compare 2 generation
Refer to CC1G description

Bit 1 CC1G: Capture/compare 1 generation
This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: A capture/compare event is generated on channel 1:
If channel CC1 is configured as output:
CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled.
If channel CC1 is configured as input:
The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set,
the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the
CC1IF flag was already high.

Bit 0 UG: Update generation
This bit can be set by software, it is automatically cleared by hardware.
0: No action
1: Re-initialize the counter and generates an update of the registers. Note that the prescaler
counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared if
the center-aligned mode is selected or if DIR=0 (upcounting), else it takes the auto-reload
value (TIMx_ARR) if DIR=1 (downcounting).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. OC2M
[3] Res. Res. Res. Res. Res. Res. Res. OC1M

[3]

Res. Res.

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OC2CE OC2M[2:0] OC2PE OC2FE
CC2S[1:0]

OC1CE OC1M[2:0] OC1PE OC1FE
CC1S[1:0]

IC2F[3:0] IC2PSC[1:0] IC1F[3:0] IC1PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:25 Reserved, always read as 0.

Bit 24 OC2M[3]: Output Compare 2 mode - bit 3

Bits 23:17 Reserved, always read as 0.

Bit 16 OC1M[3]: Output Compare 1 mode - bit 3

Bit 15 OC2CE: Output compare 2 clear enable

OCxM Output Compare Mode: PWM mode is 0110

CCxS Capture Compare Selection: output is 00

OCxPE Preload Enable: new duty value taken into account only

when there is an overflow.

M. Briday MICRO 2020/2021 154 / 224

Capture Compare Enable Register CCER

CCERx Capture Compare Enable Register

General-purpose timers (TIM2/TIM3/TIM4) RM0316

662/1141 DocID022558 Rev 8

21.4.9 TIMx capture/compare enable register (TIMx_CCER)
Address offset: 0x20

Reset value: 0x0000

Bits 7:4 IC3F: Input capture 3 filter

Bits 3:2 IC3PSC: Input capture 3 prescaler

Bits 1:0 CC3S: Capture/Compare 3 selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TI3
10: CC3 channel is configured as input, IC3 is mapped on TI4
11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CC4NP Res. CC4P CC4E CC3NP Res. CC3P CC3E CC2NP Res. CC2P CC2E CC1NP Res. CC1P CC1E

rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 CC4NP: Capture/Compare 4 output Polarity.
Refer to CC1NP description

Bit 14 Reserved, must be kept at reset value.

Bit 13 CC4P: Capture/Compare 4 output Polarity.
Refer to CC1P description

Bit 12 CC4E: Capture/Compare 4 output enable.
refer to CC1E description

Bit 11 CC3NP: Capture/Compare 3 output Polarity.
Refer to CC1NP description

Bit 10 Reserved, must be kept at reset value.

Bit 9 CC3P: Capture/Compare 3 output Polarity.
Refer to CC1P description

Bit 8 CC3E: Capture/Compare 3 output enable.
Refer to CC1E description

Bit 7 CC2NP: Capture/Compare 2 output Polarity.
Refer to CC1NP description

Bit 6 Reserved, must be kept at reset value.

Bit 5 CC2P: Capture/Compare 2 output Polarity.
refer to CC1P description

Bit 4 CC2E: Capture/Compare 2 output enable.
Refer to CC1E description

Bit 3 CC1NP: Capture/Compare 1 output Polarity.
CC1 channel configured as output: CC1NP must be kept cleared in this case.
CC1 channel configured as input: This bit is used in conjunction with CC1P to define
TI1FP1/TI2FP1 polarity. refer to CC1P description.

CCxE Capture Compare Enable

CCxP Capture Compare Polarity

M. Briday MICRO 2020/2021 155 / 224

Example: PWM signal

We want to realize the following signal on the pin PB3.

PWM frequency (FPWM = 1
PPWM

): 1KHz

duty cycle: 20% (tH
PPWM

);

We fix ARR to 99, so that the duty cycle may be changed with 1%.

PB3

PPWM

tH

M. Briday MICRO 2020/2021 156 / 224

Example: PWM signal

The documentation (STM32F303 datasheet) shows:

Pinout and pin descriptions
STM

32F303x6/x8

40/121
D

ocID
025083 R

ev 7

Table 15. Alternate functions

Port

AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15

SYS_AF
TIM2/TIM15/
TIM16/TIM17/

EVENT

TIM1/TIM3/
TIM15/
TIM16

TSC I2C1/TIM1 SPI1/
Infrared

TIM1/
Infrared

USART1/USA
RT2/USART3/

GPCOMP6

GPCOMP2/
GPCOMP4/
GPCOMP6

CAN/TIM1/
TIM15

TIM2/TIM3/TI
M17 TIM1 TIM1 OPAMP2 - EVENT

Port A

PA0 - TIM2_CH1/TI
M2_ETR - TSC_G1_IO1 - - - USART2_CTS - - - - - - - EVENTOUT

PA1 - TIM2_CH2 - TSC_G1_IO2 - - - USART2_RTS
_DE - TIM15_CH1N - - - - - EVENTOUT

PA2 - TIM2_CH3 - TSC_G1_IO3 - - - USART2_TX COMP2_OUT TIM15_CH1 - - - - - EVENTOUT

PA3 - TIM2_CH4 - TSC_G1_IO4 - - - USART2_RX - TIM15_CH2 - - - - - EVENTOUT

PA4 - - TIM3_CH2 TSC_G2_IO1 - SPI1_NSS - USART2_CK - - - - - - - EVENTOUT

PA5 - TIM2_CH1/TI
M2_ETR - TSC_G2_IO2 - SPI1_SCK - - - - - - - - - EVENTOUT

PA6 - TIM16_CH1 TIM3_CH1 TSC_G2_IO3 - SPI1_MISO TIM1_BKIN - - - - - - - - EVENTOUT

PA7 - TIM17_CH1 TIM3_CH2 TSC_G2_IO4 - SPI1_MOSI TIM1_CH1N - - - - - - - - EVENTOUT

PA8 MCO - - - - - TIM1_CH1 USART1_CK - - - - - - - EVENTOUT

PA9 - - - TSC_G4_IO1 - - TIM1_CH2 USART1_TX - TIM15_BKIN TIM2_CH3 - - - - EVENTOUT

PA10 - TIM17_BKIN - TSC_G4_IO2 - - TIM1_CH3 USART1_RX COMP6_OUT - TIM2_CH4 - - - - EVENTOUT

PA11 - - - - - - TIM1_CH1N USART1_CTS - CAN_RX - TIM1_CH4 TIM1_BKIN2 - - EVENTOUT

PA12 - TIM16_CH1 - - - - TIM1_CH2N USART1_RTS
_DE COMP2_OUT CAN_TX - TIM1_ETR - - - EVENTOUT

PA13 JTMS/SWDAT TIM16_CH1N - TSC_G4_IO3 - IR_OUT - USART3_CTS - - - - - - - EVENTOUT

PA14 JTCK/SWCLK - - TSC_G4_IO4 I2C1_SDA - TIM1_BKIN USART2_TX - - - - - - - EVENTOUT

PA15 JTDI TIM2_CH1/
TIM2_ETR - TSC_SYNC I2C1_SCL SPI1_NSS - USART2_RX - TIM1_BKIN - - - - - EVENTOUT

Port B

PB0 - - TIM3_CH3 TSC_G3_IO2 - - TIM1_CH2N - - - - - - - - EVENTOUT

PB1 - - TIM3_CH4 TSC_G3_IO3 - - TIM1_CH3N - COMP4_OUT - - - - - - EVENTOUT

PB2 - - - TSC_G3_IO4 - - - - - - - - - - - EVENTOUT

PB3 JTDO/TRACE
SWO TIM2_CH2 - TSC_G5_IO1 - SPI1_SCK - USART2_TX - - TIM3_ETR - - - - EVENTOUT

PB4 NJTRST TIM16_CH1 TIM3_CH1 TSC_G5_IO2 - SPI1_MISO - USART2_RX - - TIM17_BKIN - - - - EVENTOUT

PB5 - TIM16_BKIN TIM3_CH2 - I2C1_SMBA SPI1_MOSI - USART2_CK - - TIM17_CH1 - - - - EVENTOUT

PB6 - TIM16_CH1N - TSC_G5_IO3 I2C1_SCL - - USART1_TX - - - - - - - EVENTOUT

PB7 - TIM17_CH1N - TSC_G5_IO4 I2C1_SDA - - USART1_RX - - TIM3_CH4 - - - - EVENTOUT

PB8 - TIM16_CH1 - TSC_SYNC I2C1_SCL - - USART3_RX - CAN_RX - - TIM1_BKIN - - EVENTOUT

PB9 - TIM17_CH1 - - I2C1_SDA - IR_OUT USART3_TX COMP2_OUT CAN_TX - - - - - EVENTOUT

...

Pinout and pin descriptions
STM

32F303x6/x8

40/121
D

ocID
025083 R

ev 7

Table 15. Alternate functions

Port

AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15

SYS_AF
TIM2/TIM15/
TIM16/TIM17/

EVENT

TIM1/TIM3/
TIM15/
TIM16

TSC I2C1/TIM1 SPI1/
Infrared

TIM1/
Infrared

USART1/USA
RT2/USART3/

GPCOMP6

GPCOMP2/
GPCOMP4/
GPCOMP6

CAN/TIM1/
TIM15

TIM2/TIM3/TI
M17 TIM1 TIM1 OPAMP2 - EVENT

Port A

PA0 - TIM2_CH1/TI
M2_ETR - TSC_G1_IO1 - - - USART2_CTS - - - - - - - EVENTOUT

PA1 - TIM2_CH2 - TSC_G1_IO2 - - - USART2_RTS
_DE - TIM15_CH1N - - - - - EVENTOUT

PA2 - TIM2_CH3 - TSC_G1_IO3 - - - USART2_TX COMP2_OUT TIM15_CH1 - - - - - EVENTOUT

PA3 - TIM2_CH4 - TSC_G1_IO4 - - - USART2_RX - TIM15_CH2 - - - - - EVENTOUT

PA4 - - TIM3_CH2 TSC_G2_IO1 - SPI1_NSS - USART2_CK - - - - - - - EVENTOUT

PA5 - TIM2_CH1/TI
M2_ETR - TSC_G2_IO2 - SPI1_SCK - - - - - - - - - EVENTOUT

PA6 - TIM16_CH1 TIM3_CH1 TSC_G2_IO3 - SPI1_MISO TIM1_BKIN - - - - - - - - EVENTOUT

PA7 - TIM17_CH1 TIM3_CH2 TSC_G2_IO4 - SPI1_MOSI TIM1_CH1N - - - - - - - - EVENTOUT

PA8 MCO - - - - - TIM1_CH1 USART1_CK - - - - - - - EVENTOUT

PA9 - - - TSC_G4_IO1 - - TIM1_CH2 USART1_TX - TIM15_BKIN TIM2_CH3 - - - - EVENTOUT

PA10 - TIM17_BKIN - TSC_G4_IO2 - - TIM1_CH3 USART1_RX COMP6_OUT - TIM2_CH4 - - - - EVENTOUT

PA11 - - - - - - TIM1_CH1N USART1_CTS - CAN_RX - TIM1_CH4 TIM1_BKIN2 - - EVENTOUT

PA12 - TIM16_CH1 - - - - TIM1_CH2N USART1_RTS
_DE COMP2_OUT CAN_TX - TIM1_ETR - - - EVENTOUT

PA13 JTMS/SWDAT TIM16_CH1N - TSC_G4_IO3 - IR_OUT - USART3_CTS - - - - - - - EVENTOUT

PA14 JTCK/SWCLK - - TSC_G4_IO4 I2C1_SDA - TIM1_BKIN USART2_TX - - - - - - - EVENTOUT

PA15 JTDI TIM2_CH1/
TIM2_ETR - TSC_SYNC I2C1_SCL SPI1_NSS - USART2_RX - TIM1_BKIN - - - - - EVENTOUT

Port B

PB0 - - TIM3_CH3 TSC_G3_IO2 - - TIM1_CH2N - - - - - - - - EVENTOUT

PB1 - - TIM3_CH4 TSC_G3_IO3 - - TIM1_CH3N - COMP4_OUT - - - - - - EVENTOUT

PB2 - - - TSC_G3_IO4 - - - - - - - - - - - EVENTOUT

PB3 JTDO/TRACE
SWO TIM2_CH2 - TSC_G5_IO1 - SPI1_SCK - USART2_TX - - TIM3_ETR - - - - EVENTOUT

PB4 NJTRST TIM16_CH1 TIM3_CH1 TSC_G5_IO2 - SPI1_MISO - USART2_RX - - TIM17_BKIN - - - - EVENTOUT

PB5 - TIM16_BKIN TIM3_CH2 - I2C1_SMBA SPI1_MOSI - USART2_CK - - TIM17_CH1 - - - - EVENTOUT

PB6 - TIM16_CH1N - TSC_G5_IO3 I2C1_SCL - - USART1_TX - - - - - - - EVENTOUT

PB7 - TIM17_CH1N - TSC_G5_IO4 I2C1_SDA - - USART1_RX - - TIM3_CH4 - - - - EVENTOUT

PB8 - TIM16_CH1 - TSC_SYNC I2C1_SCL - - USART3_RX - CAN_RX - - TIM1_BKIN - - EVENTOUT

PB9 - TIM17_CH1 - - I2C1_SDA - IR_OUT USART3_TX COMP2_OUT CAN_TX - - - - - EVENTOUT

. Configure pin PB3 for the PWM;

. Configure timer to get the correct frequency;

. Configure comparison value to get a 20% ratio.

M. Briday MICRO 2020/2021 157 / 224

Example: PWM signal

PB3

PPWM

tH

void setup (void){
//1 - pin configuration:
// alternate config 1 for PB3
pinAlt(GPIOB,3,1);

//...

M. Briday MICRO 2020/2021 158 / 224

Example: PWM signal

PB3

PPWM

tH

//...

//2 - timer configuration (use TIM2@10KHz)
RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;
__asm("nop");
//reset peripheral (mandatory!)
RCC->APB1RSTR |= RCC_APB1RSTR_TIM2RST;
RCC->APB1RSTR &= ∼RCC_APB1RSTR_TIM2RST;
__asm("nop");

//config timer@10KHz, with 100 ticks (duty cycle at 1%)
TIM2->PSC = 64-1; //prescaler : tick@1us
TIM2->ARR = 100-1; //auto-reload: counts 100 ticks

//...

M. Briday MICRO 2020/2021 159 / 224

Example: PWM signal

PB3

PPWM

tH

//...
//3- PWM configuration
TIM2->CCMR1 &= ∼TIM_CCMR1_CC2S_Msk; //channel 2 as output
TIM2->CCMR1 &= ∼TIM_CCMR1_OC2M_Msk;
TIM2->CCMR1 |= 6 << TIM_CCMR1_OC2M_Pos; //output PWM mode 1
TIM2->CCMR1 |= TIM_CCMR1_OC2PE; //pre-load register TIM2_CCR2

TIM2->CR1 &= ∼TIM_CR1_CMS_Msk; //mode 1 // edge aligned mode
TIM2->CCER |= TIM_CCER_CC2E; //enable
TIM2->CR1 |= TIM_CR1_CEN; //config reg : enable

TIM2->CCR2 = 20-1; //20%
}

M. Briday MICRO 2020/2021 160 / 224

Example: PWM signal

PB3

PPWM

tH

int main()
setup()
while(1){
//nothing to do
//signal generation is
//autonomous

}
}

M. Briday MICRO 2020/2021 161 / 224

Contents

1 Introduction

2 How to deal only with 0 and 1?

3 Specific C language operations

4 General Purpose I/O

5 Clock Sources

6 Pin muxing

7 Timer

8 Pulse Width Modulation

9 Interrupts

10 External Interrupt Handling

11 Serial Comm. (UART/I2C/SPI)

M. Briday MICRO 2020/2021 162 / 224

Interest for interrupts

Ex: rotation of a stepper motor, with a precise frequency of 500Hz:

timer TIM6

call to stepperStep()

void setup(void)
{
//input clock = 64MHz.
RCC->APB1ENR |= RCC_APB1ENR_TIM6EN;
__asm("nop");
//reset peripheral (mandatory!)
RCC->APB1RSTR |= RCC_APB1RSTR_TIM6RST;
RCC->APB1RSTR &= ∼RCC_APB1RSTR_TIM6RST;
__asm("nop");

TIM6->PSC = 6400-1; //tick@100us
TIM6->ARR = 20-1; //counts 20 ticks
TIM6->CR1 |= TIM_CR1_CEN;
//setup stepper motor
stepperSetup();

}

int main() {
setup();
while(1)
{
//reset flag
TIM6->SR &= ∼TIM_SR_UIF;
//1 step
stepperStep();
//wait...
while(!(TIM6->SR & TIM_SR_UIF));

}
}

M. Briday MICRO 2020/2021 163 / 224

Interest for interrupts

Time sequence of the application (after initialization):

timer TIM6

bit UIF of TIM6->SR

program activity

call to stepperStep()

M. Briday MICRO 2020/2021 164 / 224

Interest for interrupts

Conclusion

The program spends its time running in a waiting loop!

It would be more appropriate to unload the microcontroller from this

test, but to make the device notify to the microcontroller, by a logical

signal, when the transition is detected

At this point, the microcontroller would have to interrupt what it is

doing to process transition detection.

This means that:

the time sequence of the program is now event triggered from the

external environment;

We exploit waiting times so that the microcontroller works on other

tasks.

M. Briday MICRO 2020/2021 165 / 224

Interest for interrupts

2 questions:

what is the hardware structure that allows the microcontroller to

process external requests?

What is the software structure associated?

An external signal requiring the microcontroller’s attention is called:

an interrupt or

an interrupt request or

an external request or . . .

M. Briday MICRO 2020/2021 166 / 224

Principle

the device is initialized;

it runs in parallel with the core (which execute instructions);
it has a defined objective:

detect an edge on a pin (falling/rising)
make an analog to digital conversion ;
wait for a defined duration (chap. p.7);
send or receive a message on a bus i2c, spi, uart, usb, . . .

When the objective is reached:

the device sends an interrupt to the microcontroller;
the microcontroller suspends its execution;
it executes the associated Interrupt Handler;
At the end of the interrupt handlers, it resumes its normal behavior.

M. Briday MICRO 2020/2021 167 / 224

Interrupt sources

The STM32F303 defines 43 different interrupt sources, including

8 for the timers (TIMx);

7 for external interrupts (EXTI);

1 for the analog to digital converters (ADC);

10 for serial communication (3 uart, 1 spi, 2 i2c ,4 can);

. . .

M. Briday MICRO 2020/2021 168 / 224

Routing of an interrupt request

NVIC

Interrupt management is done by a dedicated device, the NVIC: Nested

Vector Interrupt Controller.

Enabling an interrupt is done at 3 levels:

at the device level: this is the local activation;

at the NVIC level: for the concurrent routing of interrupts

at the core level: this is the global activation. If interrupts are

disabled at the core level, there is no more interrupt at all.

M. Briday MICRO 2020/2021 169 / 224

Routing of an interrupt request

1 local validation (register [D]IER)

2 NVIC validation

3 interrupt priority (see p. 174);

4 global validation;

&

local interrupt SR

local validation
[D]IER &

NVIC validation

A

priority level
of the interrupt
request

B
priority level of
the core

&

A<B

&

interrupt global
validation

interrupt re-
quest to the
core

Périphérique
(ST)

NVIC
(ARM)

Cœur Cortex
(ARM)

M. Briday MICRO 2020/2021 170 / 224

Routing of an interrupt request: local validation

The device should be configured. the validation is done through device

register [D]IER (Interrupt Enable Register)

The register has the same structure as the status register (SR). When the

device has done its work, a flag is set in the register SR.

&

local interrupt SR

local validation
[D]IER &

NVIC validation

A

priority level
of the interrupt
request

B
priority level of
the core

&

A<B

&

interrupt global
validation

interrupt re-
quest to the
core

Périphérique
(ST)

NVIC
(ARM)

Cœur Cortex
(ARM)

M. Briday MICRO 2020/2021 171 / 224

Routing of an interrupt request: NVIC

Device validation NVIC is common to all ARM CortexM processors.

2 functions are provided by ARM (IRQ = Interrupt ReQquest):

void NVIC_EnableIRQ(int src); //validation

void NVIC_DisableIRQ(int src); //invalidation

&

local interrupt SR

local validation
[D]IER &

NVIC validation

A

priority level
of the interrupt
request

B
priority level of
the core

&

A<B

&

interrupt global
validation

interrupt re-
quest to the
core

Périphérique
(ST)

NVIC
(ARM)

Cœur Cortex
(ARM)

M. Briday MICRO 2020/2021 172 / 224

Routing of an interrupt request: NVIC

The argument (src) is the interrupt source id. ST defines symbolic name

in the register definition file (stm32f303x8.h), with the name of the

source, followed by _IRQn:

TIM2⇒ TIM2_IRQn. . .

but TIM6 for instance shares its interrupt source with the first DAC:⇒
TIM6_DAC1_IRQn

NVIC_EnableIRQ(TIM3_IRQn); //ex timer TIM3

&

local interrupt SR

local validation
[D]IER &

NVIC validation

A

priority level
of the interrupt
request

B
priority level of
the core

&

A<B

&

interrupt global
validation

interrupt re-
quest to the
core

Périphérique
(ST)

NVIC
(ARM)

Cœur Cortex
(ARM)

M. Briday MICRO 2020/2021 173 / 224

Routing of an interrupt request: priorities

The priority is introduced to manage nested interrupt).

When the core executes the code associated to an interrupt, it inherits the

priority of the interrupt:

if another interrupt with a higher priority occurs, the execution of the

current interrupt is preempted (and the current core priority

increases);

if another interrupt with a lower priority occurs, the execution of the

new interrupt is delayed until the end of the execution of the current

interrupt handler.

&

local interrupt SR

local validation
[D]IER &

NVIC validation

A

priority level
of the interrupt
request

B
priority level of
the core

&

A<B

&

interrupt global
validation

interrupt re-
quest to the
core

Périphérique
(ST)

NVIC
(ARM)

Cœur Cortex
(ARM)

M. Briday MICRO 2020/2021 174 / 224

Routing of an interrupt request: priorities

The priority is introduced to manage nested interrupt).

This Cortex-M4 core supports up to 16 priority levels1: de 0 to 15.

Caution

The higher priority is the lowest value!

0 is the highest priority. . .

&

local interrupt SR

local validation
[D]IER &

NVIC validation

A

priority level
of the interrupt
request

B
priority level of
the core

&

A<B

&

interrupt global
validation

interrupt re-
quest to the
core

Périphérique
(ST)

NVIC
(ARM)

Cœur Cortex
(ARM)

1ARM allows up to 256 levels for the Cortex-M4
M. Briday MICRO 2020/2021 175 / 224

Routing of an interrupt request: priorities

As for the NVIC validation, ARM gives a function:

void NVIC_SetPriority(int src, int priority);

src the interrupt source;

priority the priority (higher the priority, lower the value)

&

local interrupt SR

local validation
[D]IER &

NVIC validation

A

priority level
of the interrupt
request

B
priority level of
the core

&

A<B

&

interrupt global
validation

interrupt re-
quest to the
core

Périphérique
(ST)

NVIC
(ARM)

Cœur Cortex
(ARM)

M. Briday MICRO 2020/2021 176 / 224

Routing of an interrupt request: global validation

Global disabling of interrupts quickly blocks interrupts from all devices.

By default, at startup, there is no global interruption blocking.

void __disable_irq (void); //no interrupt

void __enable_irq (void);

&

local interrupt SR

local validation
[D]IER &

NVIC validation

A

priority level
of the interrupt
request

B
priority level of
the core

&

A<B

&

interrupt global
validation

interrupt re-
quest to the
core

Périphérique
(ST)

NVIC
(ARM)

Cœur Cortex
(ARM)

M. Briday MICRO 2020/2021 177 / 224

Interrupt request

Once the interrupt request is validated, the processor:

suspends the ongoing execution of the program;

save the current context of the processor (registers);

execute the interrupt request;

restores the previous context;

resumes the execution of the program where it was interrupted.

There is a different interrupt routine for each interrupt source, whose

name is formed by the device name, followed by _IRQHandler. . . but

some interrupt routines may be shared by different devices:

void TIM6_DAC1_IRQHandler();

M. Briday MICRO 2020/2021 178 / 224

Interrupt request

As a result, for the synchronization:

if the device is correctly configured (TIM2 for instance)

if there is no other interrupt with a higher priority under execution;

if interrupts are validated at the core level (global)

Then:

The processor suspends its execution and runs the interrupt request

TIM2_IRQHandler.

The systems behaves like if the hardware was calling the function

TIM2_IRQHandler().

Caution

The interruption routine can’t have an argument (in or out)!

Communication between the interrupt routine and the rest of the program

can only be done by global variables!

M. Briday MICRO 2020/2021 179 / 224

Full Example

get back to the example with the stepper motor (p. 163)

timer TIM6

call to stepperStep()

void setup(void)
{
//input clock = 64MHz.
RCC->APB1ENR |= RCC_APB1ENR_TIM6EN;
__asm("nop");
//reset peripheral (mandatory!)
RCC->APB1RSTR |= RCC_APB1RSTR_TIM6RST;
RCC->APB1RSTR &= ∼RCC_APB1RSTR_TIM6RST;
__asm("nop");

TIM6->PSC = 6400-1; //tick@100us
TIM6->ARR = 20-1; //counts 20 ticks
TIM6->CR1 |= TIM_CR1_CEN;
//setup stepper motor
stepperSetup();

//enable interrupt
TIM6->DIER |= TIM_DIER_UIE;
NVIC_EnableIRQ(TIM6_DAC1_IRQn);

}

void TIM6_DAC1_IRQHandler()
{
//1 step
stepperStep();
//acknowledge
TIM6->SR &= ∼TIM_SR_UIF;

}

int main() {
setup();
while(1)
{
//nothing!

}
}

M. Briday MICRO 2020/2021 180 / 224

Full Example

To be noted:

the initialization of the device is identical, only the local validation is

added (DIER);

the configuration of the NVIC is limited to a function call: no priority

here, because there is only one interruption!

the structure of the interrupt routine is similar to the polling approach
as before but:

the routine is called only where there is effectively an overflow
the while loop is removed. If the code is executed, this is because
there was an overflow.
the interrupt should be acknowledged. In the other case, the routine is
called again and again!

there is many cpu time to compute something else (in the main).

M. Briday MICRO 2020/2021 181 / 224

Full Example

Time sequence of the application (after initialization):

TIM6->CNT

bit UIF of TIM6->SR

ISR activity

call to stepperStep()

idle time

M. Briday MICRO 2020/2021 182 / 224

Full Example

Time sequence of the application (after initialization):

TIM6->CNT

bit UIF of TIM6->SR

ISR activity

call to stepperStep()

idle time

M. Briday MICRO 2020/2021 182 / 224

Exercice: Signal generation

We want to program a chaser under interrupt, with the leds (associated to

pins PA0 to PA7. The refresh rate is set at 10Hz. The track will go to the

left, then to the right, etc....

. give the I/O inits;

. give the timer init (TIM6);

. enable the interrupt and give the ISR code

The idle task (code executed in the main() loop), we toggle the output on

PB0, at the max frequency of the processor.

M. Briday MICRO 2020/2021 183 / 224

Exercice: Signal generation

void setup() {
//leds chaser

//I/O signal

//TIM6

}

M. Briday MICRO 2020/2021 184 / 224

Exercice: signal generation

void setup() {
//leds chaser
for(int led=0; led<8;led++)
pinMode(GPIOA, led, OUTPUT);

//I/O signal
pinMode(GPIOB,0, OUTPUT);

//TIM6 - input clock = 64MHz.
RCC->APB1ENR |= RCC_APB1ENR_TIM6EN;
__asm("nop");
//reset peripheral (mandatory!)
RCC->APB1RSTR |= RCC_APB1RSTR_TIM6RST;
RCC->APB1RSTR &= ∼RCC_APB1RSTR_TIM6RST;
__asm("nop");

TIM6->PSC = 64000-1; //tick@1ms
TIM6->ARR = 10-1; //counts 10 ticks
TIM6->CR1 |= TIM_CR1_CEN;

}

M. Briday MICRO 2020/2021 184 / 224

Exercice: signal generation

. enable interrupt on TIM6:

local validation (device)
NVIC validation

void configIT()

{

//local validation

//NVIC validation

}

M. Briday MICRO 2020/2021 185 / 224

Exercice: signal generation

. enable interrupt on TIM6:

local validation (device)
NVIC validation

void configIT()

{

//local validation

TIM6->DIER |= TIM_DIER_UIE;

//NVIC validation

NVIC_EnableIRQ(TIM6_DAC1_IRQn);

}

M. Briday MICRO 2020/2021 185 / 224

Exercice: signal generation

The sequence to reproduce is:

time

Led0

Led1

Led2

Led3

Led4

Led5

Led6

Led7

. give the content of the ISR

acknowledge the interrupt;
get the value in the structure;

M. Briday MICRO 2020/2021 186 / 224

Exercice: signal generation

typedef struct {
int size ;
int val [] ;

} seqType;
const seqType seq = {

. size = ,

. val = {
};
void TIM6_DAC1_IRQHandler ()
{

static int index = 0;
//acknowledge

//** application **

}

M. Briday MICRO 2020/2021 187 / 224

Exercice: signal generation

typedef struct {
int size ;
int val [] ;

} seqType;
const seqType seq = {

. size = 14,

. val = {1,2,4,8,16,32,64,128,64,32,16,8,4,2}
};
void TIM6_DAC1_IRQHandler ()
{

static int index = 0;
//acknowledge
TIM6−>SR &=∼TIM_SR_UIF ;
//** application **
GPIOA−>ODR &=∼0xFF ; //clear
GPIOA−>ODR |= seq . val [index] ;
//index
index++;
i f (index >= seq . size) index = 0;

}

Another solution using GPIOA->BSRR?

M. Briday MICRO 2020/2021 187 / 224

Exercice: signal generation

main part:

. give the main() function that assembles the whole:

int main()

{

while(1)

{

}

}

M. Briday MICRO 2020/2021 188 / 224

Exercice: signal generation

main part:

. give the main() function that assembles the whole:

int main()

{

setup();

configIT();

while(1)

{

//nothing about chaser...

pinToggle(PORTB,0);

}

}

M. Briday MICRO 2020/2021 188 / 224

Exercice: signal generation

Chronogram

main()

PB.0

TIM6 ISR

bit UIF of

TIM6->SR

PA0-7

The processor only does one thing at a time. It is either in the main

program (in the background task) or in the interrupt function. It is its high

speed of execution that gives us the illusion of parallelism of execution.

M. Briday MICRO 2020/2021 189 / 224

Exercice: signal generation

Chronogram

main()

PB.0

TIM6 ISR

bit UIF of

TIM6->SR

PA0-7 1 2 4 8

The processor only does one thing at a time. It is either in the main

program (in the background task) or in the interrupt function. It is its high

speed of execution that gives us the illusion of parallelism of execution.

M. Briday MICRO 2020/2021 189 / 224

Functional architecture

An algorithm is used to describe sequential behaviour.

Objective

The purpose of the functional structure is to provide a graphical

description to show the links between the different entities supposed to

run in parallel, each performing a function in the system.

The functional structure does not replace the algorithm, it completes it by

providing another level of description.

M. Briday MICRO 2020/2021 190 / 224

functional architecture

The processes supposed to run in parallel;

the hardware actions performed by peripherals;

the (temporary) software actions performed by interrupts;

the permanent software action (the background task);

Handler

M. Briday MICRO 2020/2021 191 / 224

Functional architecture

Links between entities may be:

Data Flow

The arrow shows the direction of the data flow

Control Flow

The arrow shows the direction of the control flow

M. Briday MICRO 2020/2021 192 / 224

Functional architecture

A global variable should be defined, as it can be shared by different

parallel tasks:

var

The arrow shows the direction of the data flow.

Here, the global variable var is written.

M. Briday MICRO 2020/2021 193 / 224

Functional architecture of the previous example

TIM6

Continuous

hardware

process

TIM6 (DAC1)

IRQHandler

Temporary

software

process

process

UIF

Chaser

Continuous

hardware

process

PA0..7

Continuous

software

process

Background

task

Led

Continuous

hardware

process

PB0

M. Briday MICRO 2020/2021 194 / 224

Functional architecture

the continuous hardware process (physical process) runs in parallel
with the processor:

timer and other peripherals;
external peripheral, such as a LCD;
sensors/actuators (external environment).

Continuous software process: The background task that runs all the

time, except when it is interrupted. The algorithm of this action is the

part of the program that is after the setup phase.

TIM6

Continuous

hardware

process

TIM6 (DAC1)

IRQHandler

Temporary

software

process

process

UIF

Chaser

Continuous

hardware

process

PA0..7

Continuous

software

process

Background

task

Led

Continuous

hardware

process

PB0

M. Briday MICRO 2020/2021 195 / 224

Functional architecture

Temporary software process: The process, a procedure activated by

the hardware, which wakes up as the result of hardware signal, and

interrupts the background task, then sleeps again after doing its job.

TIM6

Continuous

hardware

process

TIM6 (DAC1)

IRQHandler

Temporary

software

process

process

UIF

Chaser

Continuous

hardware

process

PA0..7

Continuous

software

process

Background

task

Led

Continuous

hardware

process

PB0

M. Briday MICRO 2020/2021 196 / 224

Contents

1 Introduction

2 How to deal only with 0 and 1?

3 Specific C language operations

4 General Purpose I/O

5 Clock Sources

6 Pin muxing

7 Timer

8 Pulse Width Modulation

9 Interrupts

10 External Interrupt Handling

11 Serial Comm. (UART/I2C/SPI)

M. Briday MICRO 2020/2021 197 / 224

Objective

extending the interrupt machanism to detect a rising/falling edge on

a pin

Example : PIR sensor (Pyroelectric (or Passive) InfraRed):

The output of the sensor is a pulse, that detect an infrared variation

in the field of the sensor.

We have to dissociate:

input level (low / high);
input edge (rising/faling);

M. Briday MICRO 2020/2021 198 / 224

The EXTernal Interrupt peripheral

On the STM32, the peripheral is called EXTI: EXTernal Interrupt.

The principle is very basic:

pin
RTSR/FTSR

EXTIx=1

µC

M. Briday MICRO 2020/2021 199 / 224

The EXTernal Interrupt peripheral

The GPIOs are connected to 16 external interrupt lines:

DocID022558 Rev 8 295/1141

RM0316 Interrupts and events

304

14.2.6 External and internal interrupt/event line mapping
36 interrupt/event lines are available: 8 lines are internal (including the reserved ones); the
remaining 28 lines are external.

The GPIOs are connected to the 16 external interrupt/event lines in the following manner:

Figure 51. External interrupt/event GPIO mapping

3$�
3%�
3&�
3'�
3(�
3)�

3$�
3%�
3&�
3'�
3(�
3)�

3$��
3%��
3&��
3'��
3(��
3)��

(;7,�

(;7,�

(;7,��

(;7,��>���@�ELWV�LQ�WKH�6<6&)*B(;7,&5��UHJLVWHU

�����
(;7,�>���@�ELWV�LQ�WKH�6<6&)*B(;7,&5��UHJLVWHU

(;7,�>���@�ELWV�LQ�WKH�6<6&)*B(;7,&5��UHJLVWHU

06�����9�

3*�
3+�

3*�
3+�

3*��

The restriction is that if we have an external interrupt on pin PA3, no other

external interrupt can be associated to Px3, with x ∈ [A,B, . . . ,G]

M. Briday MICRO 2020/2021 200 / 224

setting an external Interrupt

The following operations should be done:

the GPIO should be configured:

clock for the GPIO port;
input port mode, with possibly pull-up (push button, encoder, . . .)

clock for the SYSCFG peripheral

RCC->APB2ENR |= RCC_APB2ENR_SYSCFGEN;
__asm("nop");

enable at least one external line (IMR register)

select the port associated to that interrupt (SYSCFG->EXTICR)

configure the edge detection (RTSR/FTSR registers)

enable the NVIC interrupt

M. Briday MICRO 2020/2021 201 / 224

Interrupt Mask Register

The interrupt mask register allows to enable an interrupt. For external

interrupts, only the bit 0 to 15 are significant:

DocID022558 Rev 8 297/1141

RM0316 Interrupts and events

304

14.3 EXTI registers
Refer to Section 2.1 on page 46 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by words (32-bit).

14.3.1 Interrupt mask register (EXTI_IMR1)
Address offset: 0x00
Reset value: 0x1F80 0000 (See note below)

Note: The reset value for the internal lines (23, 24, 25, 26, 27 and 28) is set to ‘1’ in order to
enable the interrupt by default.

14.3.2 Event mask register (EXTI_EMR1)
Address offset: 0x04
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MR31 MR30 MR29 MR28 MR27 MR26 MR25 MR24 MR23 MR22 MR21 MR20 MR19 MR18 MR17 MR16

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MR15 MR14 MR13 MR12 MR11 MR10 MR9 MR8 MR7 MR6 MR5 MR4 MR3 MR2 MR1 MR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 MRx: Interrupt Mask on external/internal line x
0: Interrupt request from Line x is masked
1: Interrupt request from Line x is not masked

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MR31 MR30 MR29 MR28 MR27 MR26 MR25 MR24 MR23 MR22 MR21 MR20 MR19 MR18 MR17 MR16

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MR15 MR14 MR13 MR12 MR11 MR10 MR9 MR8 MR7 MR6 MR5 MR4 MR3 MR2 MR1 MR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 MRx: Event Mask on external/internal line x
0: Event request from Line x is masked
1: Event request from Line x is not masked

//interrupt for Px1 (x not yet defined)

EXTI->IMR |= EXTI_IMR_MR1; //Mask register 1

M. Briday MICRO 2020/2021 202 / 224

EXTI Configuration register

The EXTI Configuration register is defined is SYSCFG peripheral!! it defines

the port chosen for external interrupt:

DocID022558 Rev 8 249/1141

RM0316 System configuration controller (SYSCFG)

262

12.1.3 SYSCFG external interrupt configuration register 1
(SYSCFG_EXTICR1)
Address offset: 0x08

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI3[3:0] EXTI2[3:0] EXTI1[3:0] EXTI0[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:12 EXTI3[3:0]: EXTI 3 configuration bits
These bits are written by software to select the source input for the EXTI3 external
interrupt.

x000: PA[3] pin
x001: PB[3] pin
x010: PC[3] pin
x011: PD[3] pin
x100: PE[3] pin
x101:PF[3] pin
x110:PG[3] pin
other configurations: reserved

4 registers are provided, for the 4x4=16 interrupts.

//select port B for exti1

SYSCFG->EXTICR[0] |= SYSCFG_EXTICR1_EXTI1_PB;

M. Briday MICRO 2020/2021 203 / 224

Rising Trigger Selection register

The RTSR register defines if a rising edge may be detected. The FTSR

(Falling Trigger Selection Register) behaves the same way

Interrupts and events RM0316

298/1141 DocID022558 Rev 8

14.3.3 Rising trigger selection register (EXTI_RTSR1)
Address offset: 0x08
Reset value: 0x0000 0000

Note: The external wakeup lines are edge-triggered. No glitches must be generated on these
lines. If a rising edge on an external interrupt line occurs during a write operation in the
EXTI_RTSR register, the pending bit is not set.
Rising and falling edge triggers can be set for the same interrupt line. In this case, both
generate a trigger condition.

14.3.4 Falling trigger selection register (EXTI_FTSR1)
Address offset: 0x0C
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TR31 TR30 TR29 Res. Res. Res. Res. Res. Res. TR22 TR21 TR20 TR19 TR18 TR17 TR16

rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TR15 TR14 TR13 TR12 TR11 TR10 TR9 TR8 TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:29 TRx: Rising trigger event configuration bit of line x (x = 31 to 29)
0: Rising trigger disabled (for Event and Interrupt) for input line
1: Rising trigger enabled (for Event and Interrupt) for input line.

Bits 28:23 Reserved, must be kept at reset value.

Bits 22:0 TRx: Rising trigger event configuration bit of line x (x = 22 to 0)
0: Rising trigger disabled (for Event and Interrupt) for input line
1: Rising trigger enabled (for Event and Interrupt) for input line.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TR31 TR30 TR29 Res. Res. Res. Res. Res. Res. TR22 TR21 TR20 TR19 TR18 TR17 TR16

rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TR15 TR14 TR13 TR12 TR11 TR10 TR9 TR8 TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:29 TRx: Falling trigger event configuration bit of line x (x = 31 to 29)
0: Falling trigger disabled (for Event and Interrupt) for input line
1: Falling trigger enabled (for Event and Interrupt) for input line.

Bits 28:23 Reserved, must be kept at reset value.

Bits 22:0 TRx: Falling trigger event configuration bit of line x (x = 22 to 0)
0: Falling trigger disabled (for Event and Interrupt) for input line
1: Falling trigger enabled (for Event and Interrupt) for input line.

//falling on exti1

EXTI->FTSR |= EXTI_FTSR_TR1;

M. Briday MICRO 2020/2021 204 / 224

Full example

Let’s configure a push button (pull-up) connected to PB1, that toggles a

led on PB0, under interrupt (1/2).

void setup ()
{

//config PB0 as output (Led)
pinMode(GPIOB,0 ,OUTPUT) ;

//config PB1 as input pull-up (push button)
pinMode(GPIOB,1 ,INPUT_PULLUP) ;

//config external interrupt on PB1
//PBx associated to EXTIx => EXTI1 here
RCC−>APB2ENR |= RCC_APB2ENR_SYSCFGEN;
__asm("nop") ;
EXTI−>IMR |= EXTI_IMR_MR1; //Mask register 1
EXTI−>FTSR |= EXTI_FTSR_TR1; //falling on exti1
SYSCFG−>EXTICR[0] |= SYSCFG_EXTICR1_EXTI1_PB; //port B for exti1
NVIC_SetPriority (EXTI1_IRQn , 3); //NVIC config
NVIC_EnableIRQ(EXTI1_IRQn) ;

}

M. Briday MICRO 2020/2021 205 / 224

Full example

Let’s configure a push button (pull-up) connected to PB1, that toggles a

led on PB0, under interrupt (2/2).

void EXTI1_IRQHandler ()
{
GPIOB−>ODR =̂ 1 ; //toggle led
EXTI−>PR |= EXTI_PR_PR1; //it acknowledge

}

/* main function */
int main(void)
{

setup () ;
/* Infinite loop */
while (1) ;

}

M. Briday MICRO 2020/2021 206 / 224

Contents

1 Introduction

2 How to deal only with 0 and 1?

3 Specific C language operations

4 General Purpose I/O

5 Clock Sources

6 Pin muxing

7 Timer

8 Pulse Width Modulation

9 Interrupts

10 External Interrupt Handling

11 Serial Comm. (UART/I2C/SPI)

M. Briday MICRO 2020/2021 207 / 224

Introduction

Main methods to communicate between 2 devices:

a parallel communication, in which each pin
transmits one bit.

µC

bit0

bit1

bit2

bit3

bit4

bit5

bit6

bit7

Pa
ra

lle
lc

o
m

m
u
n
ic

a
ti

o
n

a serial communication, where each bit is
transmitted one after the other.

µC
Tx

Rx

S
e
ri

a
lc

o
m

m
u
n
ic

a
ti

o
n

There are many serial communication protocols:

USB, UART, SPI, I2C, CAN, . . .

M. Briday MICRO 2020/2021 208 / 224

Example: a drone

Global electronic architecture of a
drone.

4 brushless motors, with an ESC
(Electronic Speed Control).

power supply

motherboard with embedded
sensors

GNSS sensor

RF Receiver

telemetry

camera gimbal control

Image from http://ardupilot.org

M. Briday MICRO 2020/2021 209 / 224

http://ardupilot.org

Example: a drone

Processor / device communication

i2c / uart

MCU

GNSS
(ublox SAM-M8Q)

servo

Magnetometer
(ST LIS3MD)

i2c / spi

Inertial measurement unit
(Gyroscope/Accelerometer)

(Invensense MPU6500)

i2c / spi

Airspeed Sensor
(mRo MS5525)

Electronic Speed Control (ESC)
PWM

BLDC
BLDC

BLDC
BLDC

PWM

i2c / spi

RF Receiver
PWM or

PPM

M. Briday MICRO 2020/2021 210 / 224

Universal Asynchronous Receiver Transmitter (UART)

On a serial line, bits are transmitted one after the other (time

multiplexing);

Transmission is point-to-point, full-duplex, with one RX line and one

TX line.

Speed is expressed in bit per second (b/s) or baud;

When idle, the line is at high level;

The transmission starts with a start bit;

This start bit is used by the receiver to synchronize itself;

The first bit of the transmitted byte is the LSB.

TX line bit0 bit1 bit2 bit3 bit4 bit5 bit6 bit7

start bit parity
stop bit

idle

LSB MSB

frame

M. Briday MICRO 2020/2021 211 / 224

UART : flow control

Flow control ensures that a signal is transmitted correctly.

The parity check is a simple way to detect a transmission error on a bit

(an inversion). However, it does not allow this error to be corrected.

the sender and receiver count the number of high bits (1) in the sent

frame.

With an even parity configuration, we will make sure that the number
of bits of the frame is even. Thus, the parity bit will be set to:

0 if the number of bits in the frame is already even;
1 if the number of bits in the frame is odd, to make this number even.

With an odd parity, we make sure that the number of bits transmitted

is odd (same approach).

This flow control allows to detect a transmission error on a bit (an

inversion), but not to know which bit is wrong.

M. Briday MICRO 2020/2021 212 / 224

UART : characteristics

the size of the data: generally 8 bits, but 7 bits (ASCII) can be used;

the control of the transmission: a bit of parity even or odd, or no

parity (even, odd or none)

speed of transmission (in bit/s): generally up to 115200 bits/s.

number of stop bits, generally programmable on 1, 1.5 or 2 bits.

We often use a configuration 115200 8N1:

115200 bauds;

8 bits of data;

no parity (N);

1 stop bit.

M. Briday MICRO 2020/2021 213 / 224

I2C : Introduction

The I2C bus (Inter Intergrated Circuit) is a local bus invented by

Philips (now NXP).

It allows the connection between the components of the same

system (µC, RAM, real-time clock, EEPROM, LCD driver, remote I/O,...)

it’s a master/slave bus, where the master initiates communication to

1 or more slaves;

the bus is synchronous bi-directional half-duplex:

a line is reserved for the clock that is common for each device
(synchronous);
bi-directional (master→ slave or master← slave);
the communication is performed in only one direction at a time
(half-duplex), because there is only one data line;

M. Briday MICRO 2020/2021 214 / 224

I2C : Introduction

In the general case, there is only one master (µC), and several slaves.

Each slave has an address (on 7 bits)⇒ maximum of 128 slaves;

the transmission speeds are relatively low:
≤ 100 kbits/s mode standard;

≤ 400 kbits/s mode fast;

≤ 1 Mbits/s mode fast+;

≤ 3.4 Mbits/s mode high speed;

≤ 5 Mbits/s mode ultra fast (unidirectional only);

M. Briday MICRO 2020/2021 215 / 224

I2C: Hardware structure

The communication uses 2 lines at high level when idle:
SDA: Serial DAta line;
SCL: Serial CLock line;

the outputs are open drain with only one pull-up resistor;

each circuit monitors the level on the bus lines;

NOTE: A pull-up resistor is required on both lines! (∼ 2KΩ for a std mode)

Master slave 1 slave 2 slave n...

SCL
SDA

Vdd

wired AND: allows synchronization (several masters on the bus, and

therefore several SCL), as well as arbitration (simultaneous data

transmission on SDA).

M. Briday MICRO 2020/2021 216 / 224

I2C: bus transaction

the master always initiates the communication: it’s the only device

that manages the clock SCL

505Atmel | SMART SAM D21 [DATASHEET]
Atmel-42181D–SAM-D21_Datasheet–09/2014

Figure 27-2. Basic I2C Transaction Diagram

Figure 27-3. Transaction Diagram Syntax

27.6.2 Basic Operation

27.6.2.1 Initialization
The following registers are enable-protected, meaning they can be written only when the I2C interface is disabled
(CTRLA.ENABLE is zero):

z Control A register (CTRLA), except Enable (CTRLA.ENABLE) and Software Reset (CTRLA.SWRST)
z Control B register (CTRLB), except Acknowledge Action (CTRLB.ACKACT) and Command (CTRLB.CMD)
z Baud Rate register (BAUD)
z Address register (ADDR) while in slave operation

PS ADDRESS

6 ... 0

R/W ACK ACK

7 ... 0

DATA ACK/NACK

7 ... 0

DATA

SDA

SCL

S A A/AR/WADDRESS DATA PA DATA

Address Packet Data Packet #0

Transaction

Data Packet #1

Direction

"0"

"1"

Master Drives Bus

Slave Drives Bus

Either Master or Slave
Drives Bus

S

Sr

P

START Condition

Repeated START Condition

STOP Condition

A

A

Acknowledge (ACK)

Not Acknowledge (NACK)

R

W

Master Read

Master Write

Data Packet Direction:

"0"

"1"

Acknowledge:

Bus Driver: Special Bus ConditionsS Start of Frame

ADDRESS slave address (7 bits). MSB first.

R/W Read/write mode

A Acknowledge from the slave (ACK slot)

DATA 8 bits data (direction depends on previous bit R/W)

P End of Frame (stoP)
M. Briday MICRO 2020/2021 217 / 224

I2C: bus transaction

Exemple of a transaction, using a logic analyser:

line D0 is SDA

line D1 is SCL

M. Briday MICRO 2020/2021 218 / 224

SPI: Introduction

The SPI (Serial Peripheral Interface) was introduced by Motorola

(become Freescale, bought by NXP in 2015) in the 80’s.

like the I2C, it’s a master/slave bus, where the master initiates

communication to 1 or more slaves;

the bus is synchronous bi-directional full-duplex:

a line is reserved for the clock that is common for each device
(synchronous);
bi-directional (master→ slave or master← slave);
the communication may be done in two directions at the same time
(full-duplex), because there is one data line for each direction;

M. Briday MICRO 2020/2021 219 / 224

SPI : Introduction

In the general case, there is only one master (µC), and several slaves.

each slave is selected using a specific I/O (Chip Select). This means

one physical pin should be reserved for each slave.

the SPI allows faster transmissions than I2C (> 10MHz) because of

the push/pull approach (vs open drain in I2C);

the SPI is a de facto standard. There are many adaptations.

M. Briday MICRO 2020/2021 220 / 224

SPI: Hardware structure

The communication uses 3 lines, and 1 Chip Select for each slave:

MISO: Data line Master In, Slave Out (or SO);
MOSI: Data line Master Out, Slave In (or SI);
SCK: Serial ClocK;
CSi: Chip Select for slave i (low when the slave is selected)

Master slave 1 slave 2 slave n...

MISO
MOSI

SCK

CS1
CS2

CSn

M. Briday MICRO 2020/2021 221 / 224

SPI : Communication modes

CPOL is the clock polarity. it gives the idle state.

CPHA is the clock phase.

SCK CPOL=0
CPOL=1

SS

Cycle # 1 2 3 4 5 6 7 8

MISO 1 2 3 4 5 6 7 8 zz

1 2 3 4 5 6 7 8 zzMOSI
CPHA=0

Cycle # 2 3 4 5 6 7 81

MISO 2 3 4 5 6 7 8 zz 1

MOSI 2 3 4 5 6 7 8 zz 1

CPHA=1

image: Wikipedia

Mode CPOL CPHA

0 0 0

1 0 1

2 1 0

3 1 1

Modes 0 and 3 works in the same
way, except in idle state (idem for
modes 1 and 2).

M. Briday MICRO 2020/2021 222 / 224

SPI: bus transaction

Exemple of a transaction, using a logic analyser (mode 0):

line D0 is CS

line D1 is SCK

line D2 is MISO

line D3 is MOSI

M. Briday MICRO 2020/2021 223 / 224

SPI: Hardware block in STM32

M. Briday MICRO 2020/2021 224 / 224

	Introduction
	A Micro-controller
	Micro-controller Examples

	How to deal only with 0 and 1?
	0 and 1…
	Integers coding
	Unsigned integers
	Signed integer coding
	Integers in C/C++
	Endianness
	Real numbers

	How to code Characters…
	ASCII
	Norme iso8859-1
	Unicode

	Specific C language operations
	C basics
	C Operations for embedded systems

	General Purpose I/O
	intro
	Digital electronic reminder
	Pin configuration registers
	Reset configuration
	output configuration
	Principle
	Registers…
	Exercice

	Input configuration
	Principe

	Clock Sources
	Pin muxing
	Timer
	Basic principle
	Technological approach
	Registers
	synchronization

	Pulse Width Modulation
	Interrupts
	Interest
	Principle
	Example
	Exercice
	Functional architecture

	External Interrupt Handling
	Serial Comm. (UART/I2C/SPI)

