
STM32 Debug with QtCreator

QtCreator is eator is a cross-platform integrated development environment (IDE)
that can be configured for the STM32. It embeds: * a source editor * a build
system * an easy-to-use graphical debugger interface

We focus here on how to use the debugger (instead of the command line gdb).

Tested with QtCreator 4.11.0. GCC for ARM should be installed first (compiler)

Installation

• install QtCreator
• check for the BareMetal plugin in Help->About plugins. . . , and Device

Support->BareMetal

Configuration

Qt Creator should be configured in 2 sectionstools->options:

• the Devices part
• the Kits part

Devices

Define the Device (how to connect to the device), in the Devices part:

1

https://www.qt.io/development-tools

• In the tab Bare Metal, click add->ST-LINK utility

• In the tab Devices, add a new device and associate it to the ST-LINK
utility.

• There is also a peripheraldescription file edit line. You can
give the file sys/CMSIS/SVD/STM32F303x.svd. The SVD file give the
information on the register set of the MCU, so that we can inspect
the full configuration of the target chip during debug (peripheral view)

2

Kits

In the Kits part:

• First define the debugger Debugger tab:
To know where is your gdb version, you can simply type in a terminal:
sh which arm-none-eabi-gdb QtCreator requires to use a gdb version
that embeddeds the python extension. it is the arm-none-eabi-gdb-py
version in the GCC version provided by ARM.

• You can set the cross-compiler. This is not required if you
wants to debug only. Here, I have both set the C compiler
(gcc) and the c++ compiler (g++). It is exactly the same con-
figuration, just rename the compiler path from gcc to g++:

• The we can define the kit that contains all the stuff (device/debugger) in

3

Kits section:
There is a warning in the Kit configuration if no compiler is associated.

Debugging session

Debug session start

To start a debugging session, the binary .elf should be generated:

make

Then, the st-util tool should be called. The utility makes the connection
between the board and the computer (using the STLink protocol). In a terminal:

$ st-util
st-util 1.5.1-12-g30de1b3
2019-12-13T08:22:40 INFO common.c: Loading device parameters....
2019-12-13T08:22:40 INFO common.c: Device connected is: F3xx medium density device, id 0x10016438
2019-12-13T08:22:40 INFO common.c: SRAM size: 0x3000 bytes (12 KiB), Flash: 0x10000 bytes (64 KiB) in pages of 2048 bytes
2019-12-13T08:22:40 INFO gdb-server.c: Chip ID is 00000438, Core ID is 2ba01477.
2019-12-13T08:22:40 INFO gdb-server.c: Listening at *:4242...

If all is ok, st-util waits to a connection on localhost:4242 port.

Then, we can connect to st-link using Qt Creator, in Debug->Start
debugging->Attach to Running Debug Server...: * define the server port
to 4242 (ST-util server port) * give the Local executable full path (path to
the .elf file)

4

Figure 1:

Using debug session

Qt Creator acts only as a graphical user interface, and all the gdb command are
now available using the GUI:

In the image just below: * the yellow arrow shows the next instruction that
will be executed * the red dot is a breakpoint, where the program should
stop. It is inserted/removed by a simple click just before the line number.

5

The program execution is controlled by the commands
(A tip label is displayed when the mouse gets over the buttons): *
start/stop/resume commands * step over won’t enter in a function,
but execute it directly * step into will enter in a function so that it can be
debugged

With the SVD file provided in the Device configuration, we can have
a look at the peripheral state (in read-only mode at this date), using
window->views->Peripheral Registers. Then, a right click on the peripheral
register window to choose the peripheral to display. In the following capture,
the GPIOB peripheral is displayed, and since the last breakpoint, the bit 3 of
ODR has been updated (shown in red):

6

Figure 2:

7

	STM32 Debug with QtCreator
	Installation
	Configuration
	Devices
	Kits

	Debugging session
	Debug session start
	Using debug session

