
Virtual Lab

M. Briday

November 18, 2020

1 Hardware/Virtual Platform

1.1 Hardware interactions

The real environment when programming the Coro lab board is in Fig.1

Qt Creator

IDE

st-util

GDB

st-link

chip

USB

STM32

MCU

SWD

S
o
ft
w
a
re

p
a
rt

H
a
rd
w
a
re

p
a
rt

Figure 1: Connection between tools and hardware

� the st-link chip and the STM32 MCU are located on the nucleo32 board

� When starting a debug session, the st-util tool is launched by QtCreator

The GDB connection is done through a socket on port 4242.

1

1.2 Virtual Hardware interactions

The virtual lab is based on the QEMU tool, on which the backend has been modi�ed to:

� model STM32F303 speci� hardware (gpio, timers. . .)

� add a communication layer to display the state of the virtual hardware

The tools are organized as in Fig.2

Qt Creator

IDE

st-utilQEMU

STM32

emulator

GDB

HW User

interface

(python

based)

POSIX

Message

queue

Figure 2: Connection between tools and hardware

The big picture is simpler. . . but the tools are not connected automatically. You can

notice:

� Qt Creator is connected exactly as with the real hardware, and it will behave in

exactly the same way.

� Qemu and the Graphical user interface communicate throuth POSIX message

queue. This means:

� it will require a POSIX compliant OS (Linux, Mac OS).

� if one of the processes is not started, the other will freeze as soon as the

message queue is full. When a process is freezed, you can just restart the

other process to consume messages.

2

2 How to Start

A basic project have:

� A CMake project �le: CMakeLists.txt

� a basic C �le: main.c

2.1 Design with Qt Creator

With Qt Creator, open the project: File → Open file or project and choose the

CMakeLists.txt �le.

The �rst time, it will ask for the appropriate kit (Desktop, STM32,. . .): con�gure the

project for the STM32 target. You should be able to edit your source �le (and have a

project on the left side), as in Fig.3.

Figure 3: Qt Creator - main project

2.2 Run on Qemu

When the project is built (Build → Build project "lab1" or Ctrl+B), then a new

directory is created: ../build-blink-STM32-Debug (where blink is the project name,

3

STM32 the kit name and Debug the build mode).

you will have to start a terminal (from the project explorer, right click inside the directory

and choose open in terminal).

From the terminal, you can start qemu in debugger mode (to be used with Qt Creator)

make qemu-gdb

[87%] Built target lab1

Scanning dependencies of target qemu-gdb

[100%] Generating lab1.bin

Now, qemu is started and waiting for a GDB connexion.

We have to start the user interface that gives information about the environment (but-

tons, leds, . . .). This is a python script that can be run as a program. You have to use

another terminal (you can press Ctrl+Shift+T to get another tab:

-> % ../qemu_io.py

A graphical interface should appear, as in Fig.4.

Figure 4: User interface

Important Note:

� Both Qemu AND the graphical interface should be started. If a process is not

launched, the other will send messages until the message bu�er is full, and then

will be freezed!. In that case, just relaunch the missing process to unfreeze.

� to exit qemu, you should type Ctrl+A x. When a debug session ends (by Qt

Creator), qemu should returns.

� the python user interface will be di�erent from one lab to another. Just launch the

correct one (and only one!)

4

2.3 Debug with Qt Creator

Qt Creator should now connect to the GDB server. Chose Debug → Start Debugging

→ Attach to running debug server... as in Fig.5

You will have to con�gure (the �rst time only):

� the local port: 4242

� the local executable: the binary �le (same as project name in the build dir, without

any extension)

� select Break at "main"

Figure 5: Attach to a running debug server

The debugger should connect and show the code of the main() function. The debugger

will behave as on the real target, and you should see the led updated after each loop on

the user interface as in Fig.6

5

Figure 6: Debug session in progress. . .

6

	Hardware/Virtual Platform
	Hardware interactions
	Virtual Hardware interactions

	How to Start
	Design with Qt Creator
	Run on Qemu
	Debug with Qt Creator

