Lab 4
Driver For The I/O Expander
MCP23S17 (SPI Interface)

M. Briday

December 14, 2020

1 Principle

This lab focuses on a standard communication interface (SPI) to interact with another
chip. The slave component is a MCP23S017 1/O Extender from Microchip that adds 2
8-bits GPIOs. The component has 2 versions, one with an i2c¢ interface (MCP23017), and
the other with a spi interface (MCP23S17). We will use the spi version. The functional
diagram is in figure

Cs— MCP23817

SCK— p—
- < » GPB7
Sl——» Serializer/ D » GPB6

SPl [¢—— Deseriali <« >

SO ¢——| eserializer < > GPBS
a0 [+ 2 2
R < » GPB2
RESET Control < > GPBT
INTA < Interrupt P 16 | |« » GPBO
INTB <« Logic < Y — » GPA7
A » GPA6
8 » GPAS
» GPA4
L4 GPIO| ¢ > GPA3
Configuration/ < » GPA2
Control < » GPA1
Registers < » GPAO

Figure 1: Functional Block Diagram of the MCP23517.

1.1 Hardware Part

On the board, the component is the one with the board number, at the left of the tft.
The 2 ports are used as:

PORTA 8 leds (seen as EXP A on the board).
PORTB 4 DIP Switches (BO to B3), and 4 push buttons (B4 to B7)

1.2 Software Part

This lab consists of writing a driver to control the component with high-level functions.
The API (Application Programming Interface) is a set of high level functions that are
available for an easy use of the component in the application. The lab implements these
functions, one after the other.

The API interface may be written in C++, or in C if you are not comfortable with the
object approach.

void pinMode(...);
void digitalWrite(...);,
void attachInterrupt(...);

high level access on MCP23517

void setBitInReg(...);
vvoid clearBitInReg(...);

void writeReg(...);

wint8_t readReg(...); Low level bit access on MCP23S17

void writeReg(...);

uint8_t readReg(...);
A 4 A\ 4

Low level R/W on MCP23S17

void setupSPI();
void beginTransaction();
vuin1:8_t transfer8(...);

Low Level SPI driver

MCU register access
\ 4

[Hardware }

Figure 2: MCP23S17 Driver Architecture.

The architecture of the whole driver is defined in figure 2l The spi low level driver is
given (see files spi.c/h). The driver is organized with different stacks, and arrows shows
the relationship between each stack (AP functions).

2 Low Level Driver

2.1 Remote Register access

The component is seen as a set of registers that can be read/written using the SPI
interface. Microchip defines two modes for the register access (in I0CON.BANK) register
field, which only have an impact on register addresses. In this lab, we use only the default

mode 0. Registers are defined in the datasheet, table 1-2, p. 5.

In this section, basic functions to read/write to a remote register are defined (stack "Low
level R/W on MCP23517" on figure [2). The SPI communication frame is defined in

figure [3] adapted from figure 1-5 of the datasheet, p. 8.

&

0

1

0|0 |A2|A1T|A0|RW| A7 | A6 | A5 | A4 | A3 | A2 | A1 | AD

* * *

D7

:4— Device Opcode :i:

Register Address %

* Address pins are enabled/disabled via IOCON.HAEN.

Figure 3: SPI Register Access. The A2-0 bits should be set to 0.

There must be an additionnal byte at the end of the frame: In write mode, this is the
data that should be written to the register, and in read mode, this is the answer from
the component.

The API of the low level driver consists in only 2 functions:

//write to a MCP register, using spi.
void writeReg(uint8_t reg, uint8_t val)
//read a MCP register, using spi.
uint8_t readReg(uint8_t reg)

Register addresses may be defined using a #define or an enum approach:

enum reg {

IODIRA

I0ODIRB

I0POLA

/...
}s

// or

//use mode 0 (default)

0x0, //direction input (1), output (0)
0x1,
0x2, //polarity (toggle) -> not used

//direction input (1), output (0)
#define IODIRA 0xO0
#define IODIRB Oxl1
#define IOPOLA O0x2

/] ...

The R/W functions have to set the Chip Select, send a frame of 3 bytes (2W and 1R, or
3W), and unset the chip select.

Question 1 Write the two low level functions to access to a remote registers.

2.2 Remote register access: bit access

In this section, we add 2 useful functions to update only one bit of a remote register.
This is the stack "Low level bit access on MCP23517" of the driver in figure [

The functions definitions are:

void setBitInReg(uint8_t reg, uint8_t bitNum);
void clearBitInReg(uint8_t reg, uint8_t bitNum);

where reg is the remote register address defined in the previous section, and bitNum the
bit number that should be updated.

These two functions do not access directly to the spi driver, but use the functions defined
in the previous section.

Question 2 Write these two functions to modify a single bit of a remote registers.

3 High Level Driver

3.1 Output mode

The High Level driver stack can now be defined to allows an easy access to the device.
The interface may be in C language, with API functions:

enum port {PORTA=0, PORTB=1};
enum mode {0UTPUT=0, INPUT=1,INPUT_PULLUP=2};
enum itType {RISING, FALLING, BOTH};

//configure a pin

// - port is PORTA or PORTB

// - numBit is the pin number (0 to 15)

// - mode is in DISABLE, OUTPUT, INPUT, ...)

void mcpPinMode (port p, unsigned char bitNum, mode m);

With an object oriented approach, the interface would be for instance:

class mcp23s17 {
public:
enum port {PORTA=0, PORTB=1};
enum mode {0UTPUT=0,INPUT=1,INPUT_PULLUP=2};
enum itType {RISING, FALLING, BOTH};
private:

enum reg { //use mode 0 (default)

IODIRA = 0x0, //direction input (1), output (0)
IODIRB = 0x1,
/...
};
public:

mcp23s17 () ;
void begin();
//configure a pin
// - port is PORTA or PORTB
// - numBit is the pin number (0 to 7)
// - mode is in DISABLE, OUTPUT, INPUT, ...)
int pinMode(port p,
unsigned char bitNum,
mode m) ;

3
Then, a single object is defined (in the C++ file), and declared as extern in the header
file:

extern mcp23s17 1ioExt;

In the application, it can be used like this: ioExt.pinMode(...);

Question 3 Define the functions of the output mode of the ports. This means:
e pinMNode() that configures a pin as oulpul/input/input pullup;
e digitallrite() that controls a single pin:

// high state if ’value’ is different from 0
// low state if ’walue’ is 0.
void digitallWrite(port p,

unsigned char bitlum,

bool walue);

3.2 First application
To test our driver, we want to make a single chaser with the leds of MCP GPIOA.

Question 4 Write this single chaser, using your driver and o timer.

3.3 Input Mode

The input mode is now easy to write, as the configuration function is already written
(pinMode()).

Question 5 write the input read function. We don’t provide a digitalRead() but a
function that reads the whole port:

//read the whole port.
uint8_t readBits(port p);

Question 6 update the application (chaser) so that Dip Switch 0 (PORTB.0) defines the
direction of the chaser.
Note: The swiltch needs an input pullup configuration.

4 Extension: Interrupts

4.1 Driver

The spi connection does not handle any interrupt management, but 2 external lines are
provided (see figure [1)), one for each port. The first line INTA is not connected (only leds
on the port), but the line INTB is connected to the MCU (PA9).

The driver is organised around the interrupt service routine, and one function to associate
an interrupt (on one pin) to a callback function. The callback function is a function with
no argumentﬂ

typedef void (*mcpCallBack) ();

The function that associates an interrupt on one pin, and its corresponding callback is:

//attach an interrupt to an input pin (port/bitNum)
void attachInterrupt(port p, uint8_t bitNum,
itType type,mcpCallBack callback);

Question 7 Configure the interrupt on external line EXT9. The handler, shared with
other lines, is EXTI9_5_IRGHandler().
A tabular of callback may be defined in the driver, for an easy access.

In the interrupt routine, the register INTCAPB should be read to determine the line that
generates the interrupt, and call the appropriate callback.

Question 8 Provide an implementation of the attachInterrupt function so that con-
figure a line, and the interrupt handler that calls the callback function.
4.2 Application

Question 9 Use your new interrupt driver, so that the chaser direction is now toggled
each time button 4 (PORTB.4) is pushed.

! A function pointer is no more than a pointer points to the first instruction of a function, i.e instead
of storing the address of a data, it stores the address of the function.A remainder of the use of function
pointers: https://www.zentut.com/c-tutorial/c-function-pointer/

https://www.zentut.com/c-tutorial/c-function-pointer/

	Principle
	Hardware Part
	Software Part

	Low Level Driver
	Remote Register access
	Remote register access: bit access

	High Level Driver
	Output mode
	First application
	Input Mode

	Extension: Interrupts
	Driver
	Application

