Embedded Computing J

M. Briday

E CENTRALE
NANTES

year 2020/2021

ECENTRALE
NANTES
M. Briday 2020/2021 1/224

@ Pin muxing

Q Timer

@ Pulse Width Modulation

@ Introduction
Q How to deal only with 0 and 17

Q Specific C language operations
Q Interrupts

Q General Purpose 1/0
Q External Interrupt Handling

Q Clock Sources
Q Serial Comm. (UART/I2C/SPI)

ECENTRALE
NANTES
M. Briday 2020/2021 2/224

Q Introduction

ECENTRALE
NANTES
M. Briday 2020/2021 3/224

Introduction

Positioning

At The Frontier Between Hardware and Software

program

Electronic interface
(analog
and/or digital)

Electronic interface
(analog
and/or digital)

sensors actuators

VNN
1111
iilii

I111

E CENTRALE
NANTES
M. Briday 2020/2021 4/224

Introduction

A micro-controller is an integrated circuit that has:
) one (or more) calculation unit(s);
) some memory (to store a program and data);
) some internal peripherals (to access the hardware).
The objective of this course is to learn:
) the software environment for deeply embedded systems
) the basic hardware peripherals of a micro-controller

) the design of a bare metal application

ECENTRALE
NANTES
M. Briday 202012021 5/224

) 8/16 or 32 bits architecture. This is the size of the data handled by
the processor. The time required to add 2 numbers on 32 bits will be
much longer on a 8-bits processor...;

) the pin number available on the chip;

) frequency: a micro-controller is a synchronous system, with a clock.
The faster the clock, the faster the calculations are;

) power consumption is a key criterion for battery-powered systems;
) peripherals implemented (1/0, Analog inputs, communication, ...);

) cost is a criterion for large series.

ECENTRALE
NANTES
M. Briday 2020/2021 6/224

The micro-controller market

In 2019:

) In value, market of 16.5 billion dollars (17.6 in 2018)

) In volume, 26.9 billion microcontrollers (28.1 in 2018)
Trends:

) volume growth of 3.9%/year between 2018 and 2023;

) value growth of 6.3%/year over the same period

) more 32 bits micro-controllers than 4/8bits since 2015.
39% for the automotive industry. Growth in the IoT.

source: VIPress.net - 2019/8/23

CENTRALE
NANTES

M. Briday 2020/2021 71224

Arduino Uno: AVR micro-controller ATMega328p
from Atmel/Microchip:

) sobits
32 KB flash (program)
2 KB SRAM (data)

) 16 MHz

) sv

)) 28 pins

M. Briday

Nucleo 32: ARM Cortex-M4 based micro-controller
STM32F303 from ST:

) 32 bits
32 to 512 KB flash (program)
16 to 80 KB SRAM (data)
) 72 MHz
) 33v
)) 32 to 144 pins
This board is used in this course.

E CENTRALE
NANTES
2020/2021 8/224

Block Diagram

This is a quite small
micro-controller... But it }

awoss

Voos =236V
v

NRESET
voDA
VSsA

b
TCk-SweLK

TS Swoat

TTDOTRACESNG corTex i cry
SeA

s

2 |loscn
osc_our
VBT =
1851036V
VRers
VREF- oscaz v
oscsz-our
ANTITAP

embeds many peripherals! o

e

5 Groups of
4 Chammele sEAF

R L SCLSDASMBA
en AF
+ compl channa B
RK
1 channe Bl o
1+ coml,channal B SR
Bk s AF A

s chanmet,
3 compl“channet
ER Bk s A

HOSIMISO,

k=> oacr_oumasar
SCANSS 33 AF

Cw k= k=> orcr.ovrzasnr
R cre. TS

Smaricard a3 AF <

u B CENTRALE
NANTES

s 0T 1isy31958v2

2020/2021 9/22

Block Diagram

This is a quite small
micro-controller... But it

embeds many peripherals!

This commercial diagram
seems more readable. ..

M. Briday

Power supply
1.8V regulator
POR/PDR/PVD
Xial oscillators
32 kHz + 4 to 32 MHz
Intemal RC oscillators
40 kHz + 8 MHz
PLL
Clock control
RTC/AWU
1x SysTick fimer
2x watchdogs
(independent and
window)
51/86/115 /0s.
Cyclic redundancy
check (CRC)
Touch-sensing
controller 24 keys

3x 16-bit (144 MHz)
motor control WM

Synchronized AG timer
1x 32-bit timers
5x 16-bit timers

Up to 512-Kbyte Flash
memory
Up to 64-Kbyte SRAM
Up to 16-Kbyte
CCM-SRAM
72 MHz 64 bytes backup register

ARM® Cortex®-M4
CPU

4x SPI,
(with 2x full duplex PS)
3xPC
1x CAN 2.0B
1x USB 2.0 FS
5x USART/UART
LIN, smartcard, IrDA,
modem control

Flexible Static Memory
Controller (FSMC)

Floating point unit
(FPU)

Nested vector
interrupt
controller (NVIC)
Memory Protection Unit

(MPU)
JTAG/SW debug/ETM

2x 12-bit DAC
basic timers
4x 12-bit ADC
40 channels / 5 MSPS
4x Programmable
bylondsbung o
. Tx comparators (25 ns)
AHB bus matrix Temperature sensor

12-channel DMA
L CENTRALE
NANTES

Simplified Architecture

ARM Cor-
tex M4 core

Flash

Memory + core program memory SRAM

working memory

GPIO
Logic

Input/Output DR

generate an

analog output

Peripherals 2¢

SPI
UART
ADC USB e
read an ana- Commurr;lcanon
log input interface

ECENTRALE
NANTES
M. Briday 20/2021 10/224

Compilation chain: getting the binary code from the C source code.

/\/ /\/
C source o q L object file
file3.c S ey filel.o
/\/ /\/
~
~
~
N
~
N
/\/ /\/
C source o q L _ objectfile | _ _ _ . L __ target
file2.c € Comipiter filel.o (it e binary code
/\/ /\/
T
-
-
-
-
-
/\/ /\/
C source o q L __ object file
filel.c ¢ Compiler filel.o
/\/ /\/

ECENTRALE
NANTES
M. Briday 2020/2021 11/224

The binary code is in fact a series of elementary instructions ordered in
machine language. One elementary instructions can do:

) an arithmetic or logical operation between 2 data (addition,
subtraction, AND, OR, ...);

) a memory transfert;
) a branch (to another program location);
) some specific operations (sleep, mode of operation, ...).

ECENTRALE
NANTES
M. Briday 2020/2021 12/224

How a core works

So the core:
) runs a program:

performs calculations;
updates memory;
. not much less!

) but also interacts with the rest of the system!

Peripheral access
The easiest way is to use memory access (read/write) to interact with the
system.

we will see later on another way to interact with the core, with interrupts page 1.

ECENTRALE
NANTES
M. Briday 2020/2021 13/224

Peripheral registers. ..

addresses

0x1234 0‘0‘1‘0‘1‘0‘1‘1
7l el s| e 3] 2 1l o

Basic Principle

The status of each bit in a register (0 or 1) is used as input information for
a device.

M. Briday 2020/2021 14/224

Peripheral registers. ..

addresses

ICU external pin

0x1234 0‘0‘1‘0‘1‘0‘1‘1
7l el s| e 3] 2 1l o

Basic Principle

The status of each bit in a register (0 or 1) is used as input information for
a device.

M. Briday 2020/2021 14/224

Peripheral registers. ..

addresses

ICU external pin

0x1233| 1 0 1 1 1 0 1 0

0x1234| 0 0 1 0 1 0 1 1

Basic Principle

The status of each bit in a register (0 or 1) is used as input information for
a device.

M. Briday 2020/2021 14/224

Peripheral registers. ..

ICU external pin

CU external pin

addresses

CU external pin

CU external pin

ICU external pin

CU external pin

CU external pin

‘“h:r MCU external pin

0x1234| 0 0 1 0 1 0 1 1

0x1233| 1 0 1 1 1 0 1 0 J

I

Basic Principle

The status of each bit in a register (0 or 1) is used as input information for
a device.

M. Briday 2020/2021 14/224

Peripheral registers. ..

A register makes the link between the computer part (memory access of
the program) and the electronic part (command of a peripheral).

The device is a combinatorial or sequential system. There are 3 types of
registers:

control register: access allows you to configure the device (write);
status register: access allows to read the device status (read);

data register: allows data to be exchanged with the peripheral
(read/write).

In most cases, many registers are required to interact with a peripheral.

CENTRALE
NANTES

Q How to deal only with 0 and 17

ECENTRALE
NANTES
M. Briday 2020/2021 16/224

Data handled

Bit (Binary digit), boolean data (0, 1);
Byte 8 bits;
Word 16 or 32 bits! Depends on the cpu!

7 6 5 4 3 2 1 0
byte [T T TTT]]

M58 158
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16 bits word

B

MSB LS|
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

szosword| [[[[L[[T IITIIIIEITTI T

LSB (Least Significant Bit)
MSB (Most Significant Bit)
The bits are numbered from the LSB (bit 0 < LSB)

Counting bytes. ..

Historically, bytes are counted in multiples of 2'° = 1024, but the metric

system counts in multiple of 103 = 1000.
2 units are defined, in decimal and binary:

Name | Symbol | Value Name | Symbol | Value
kilo ko 102 kibi kio 210
mega Mo 10° mebi Mio 220
giga Go 10° gibi Gio 230
tera To 1012 tebi Tio 240
peta Po 101° pebi Pio 250

This has been validated in the ISO norm in 1998, ... but not always
respected.

ECENTRALE
NANTES
M. Briday 2020/2021 18/224

Memory organisation

On every modern processor, we can consider the memory organisation as

just a flat tabular of 2P bytes.

Processor p | address space
Microchip PIC18 12 4096
Microchip ATMega328 | 16 64 kio
ARM Cortex-M 32 4 gio

Practically, it is often possible to read/write several bytes (2/4) to

accelerate memory transferts.

The access in that last case should be aligned: for instance, a 32-bits
access should have a memory address that is a multiple of 4.

M. Briday

E CENTRALE
NANTES
2020/2021 19/224

Unsigned integers coding

The hexadecimal base is very often used in embedded
systems.
d I value | H decimal | Binary
The conversion from binary < hex basis is straightforward: o 0x0 0 0000
an hex number is a group of 4 binary digits. 1 ox1 0 0661
2 ox2 0 0010
Numbers in hex will be prefixed by 0x, as in C language. 3 0x3 0 0011
Example: 4 ox4 0 0100
5 0x5 0 0101
int vall = 0X1234; //hexa 6 0x6 0 0110
int val2 = 4660; //decimal 7 ox7 0 0111
.) 8 ox8 0 1000
Here, vall and val2 will have the same value in memory.
9 0x9 0 1001
10 [) 0 1010
0001 0010 6011 0100 xa
11 oxb 0 1011
The compiler performs the base change during code 12 oxc 0 1160
generation. 13 oxd o 1161
14 oxe 0 1110
15 oxf 0 1111
16 0x10 1 0000
17 ox11 1 0001
18 ox12 10910
19 0x13 1| oo ST

Integer coding

As a consequence, in hexadecimal, a byte requires 2 digits:
0x00 = 0

OxFF = 255
A value is coded on the interval [0, 28 — 1] = [0, 255]

How to represent a negative value?
We can only deal with 2 symbols: 0 and 1...

CENTRALE
NANTES

M. Briday 2020/2021 21/224

Signed numbers - a first naive approach

we split the sign and the absolute value:
) one bit (MSB) codes the sign (0 is +, 1 is -)
) 2"~ bits for the absolute value
The interval is [—(2""1 — 1),2""! — 1] => [-127,127]

15t problem: Zero is coded twice:
) +0 = 0000 0000
) -0 =1000 0000

How to do the code if(val==0) ...?

This representation is not used in real processors

CENTRALE
NANTES

M. Briday 2020/2021 22/224

Signed numbers - a first naive approach

The electronic circuit that performs the addition should be updated:

30 (0x1E) ’0|0|0|1|1|1|1|0‘

+

6 5 4 3 2 1 0
o [1]o]o o 1]1]0]0]

This representation is not used in real processors

ECENTRALE
NANTES
M. Briday 2020/2021 23/224

Signed numbers - a first naive approach

The electronic circuit that performs the addition should be updated:

30 (0x1E) ’0|0|0|1|1|1|1|0‘

+

6 5 4 3 2 1 0
o [1]o]o o 1]1]0]0]

7 6 5 4 3 2 1 0
30+(—12)=187é0xAA=—42’1|0|1|0|1|0|1|0‘

This representation is not used in real processors

ECENTRALE
NANTES
M. Briday 2020/2021 23/224

Signhed integers - 2's Complement

Signed integers are coded using the 2's complement: 2",
With 8 bits, -12 is coded 28 — 12 = 244, in binary 1111 0100

As a consequence:

) (-0) is coded 28 — 0 = 256, but using 8 bits = 0000 0000
unicity of O

) The interval is no more symetric: [-2"~1,2"=1 — 1] => [-128,127]

ECENTRALE
NANTES
M. Briday 2020/2021 24/224

Signhed integers - 2's Complement

The electronic circuit that performs the addition is the same:

7 6 5 4 3 2 1
30 (Ox1E) |0|0|0|1|1|1|1|0|
6 3 1

+
7

-12 (0xF4) |1|1|1|1|0|1|0|0|

CENTRALE
NANTES

Signhed integers - 2's Complement

The electronic circuit that performs the addition is the same:

30 (Ox1E) |0|0|0|1|1|1|1|0|

+

-12 (0xF4) |1|1|1|1|0|1|0|0|

30+(-12) = 18 = 0x12 |0|0|0|1|0|0|1|0|

As a side effect, the MSB gives the sign.

Coding Intervals

Coding intervals for n bits are:
) [0,2" — 1] with unsigned int
) [-2"1 2771 — 1] with signed int

data size unsigned signed
8 bits [0,255] [-128,127]
16 bits [0,65 535] [-32 768,32 767]
32 bits [0,4 294 967 295] [-2 147 483 648,2 147 483 647]
64 bits [0,18 446 744 073 709 551 616] | [-9 223 372 036 854 775 808, 9 223 372 036 854 775 807]

On [0,2"~1 — 1], the coding of both unsigned and signed integers is the
same.

ECENTRALE
NANTES
M. Briday 2020/2021 26/224

Integers in C/C++

The C type int is the basic data that is handled by the CPU. its size must
be at least 16 bits.

) the AVR architecture (8-bits CPU), one int is 16 bits.
) the ARM architecture (32-bits CPU), one int is 32 bits.

Classical types are:

type common size norm
char 8 bits > 8 bits
short 16 bits > 16 bits
int 32 bits > 16 bits
long 32 bits > 32 bits
long long 64 bits > 64 bits

An int may be signed or unsigned!! To be sure, one can write
unsigned int.

M. Briday 2020/2021 27/224

Integers in C/C++

To be sure of the size of the manipulated data, we can use (with the
header file #include <stdint.h>):

data size | unsigned | signed
8 bits uint8_t sint8_t
16 bits uintlé_t | sintl6_t
32 bits uint32_t | sint32_t
64 bits uint64_t | sint64_t

M. Briday

[

CENTRALE
NANTES

2020/2021 28/224

Overflow with C/C++

With a 16/32 bits CPU, overflows can easily occur!
They are not handled by the C (operation using modulo 27).

What is the result of the following code ?
uint8_t val = 400;
sint8_t t = 100;

sint8_t u 50;
sint8_t v = t+u; //?

M. Briday

uint8_t nbItem = 100;
while(nbItem >= 0)
{
//user code
nbItem--;

}
//or
for(uint8_t i=0;1i<256;i++){

//user code

}

CENTRALE
NANTES

2020/2021 29/224

Byte order in memory - Endianness

For data greater than 1 byte, 2 solutions are available.
Let the 32-bits value 305419896 (or 0x12345678):

Big Endian Little Endian
The hightest significant byte is at the highest The hightest significant byte is at the lowest
address address
adresses adresses
ox1234| 12 0x1234| 78
0x1235| 34 0x1235| 56
0x1236| 56 0x1236| 34
0x1237| 78 0x1237| 12

CENTRALE
NANTES

Byte order in memory - Endianness

Impact:

) communication between 2 systems = the endianness should be
defined for the network: Network Byte Order of the IP protocol IP for
instance.

) memory dump

As there are 2 possibilities, founders didn’t made the same choice!
) Intel (x86) for Little Endian
) Motorola (PowerPC) for Big Endian (also Alpha, Sparc, Mips, ...)
) ARM cores can workk with the 2 approaches.

CENTRALE
NANTES

Fixed point numbers

We use the same hardware as for integers. Results should be interpreted.

Example: temperature sensor DS1620 (Maxim), the value is coded in
0.5°C increment, using 9 bits (2’'s complement):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

27 26 25 24 23 22 21 20 271
not significative ’

Here, the value is -25°C.

CENTRALE
NANTES

Floating point numbers

In that case, there is a trade-off between range and precision. The
position of the point is not fixed. The standard /EEE754 defines the
number:

val = (—1)° x 1,M x 2F
where:
) Sis the sign (0 = positive, 1 = negative)
) M is the fractionnal part of the mantissa, 23 or 52 bits;

) Eis the exponent (coded en with a bias of 127 with 32 bits, and 1023
with 64 bits), 8 or 11 bits;

the number is coded using 32 bits (float), or 64 bits (doub'le):

LITTTTTTITIT I ITTIT I IITTITITITITITITII]

Exponent Mantissa

CITTTTIT I I I I I I T I I I IIIITIIITIITIIITIITIITIT]

CENTRALE
NANTES

Exponent

Mantissa

Floating point numbers - addition steps

1,011 x24 (10110)2 or 221p

+ 1,001 x22 (100,1); or 4,519

) Decoding values

) Adapt to the same exponent

CENTRALE
LNANTES
M. Briday 2020/2021 34/224

Floating point numbers - addition steps

101, 1 x22 (10110)2 or 221p

+ 1,001 x22 (100,1); or 4,519

) Decoding values

) Adapt to the same exponent

CENTRALE
LNANTES
M. Briday 2020/2021 34/224

Floating point numbers - addition steps

101, 1 x22 (10110)2 or 221p

+ 1 , 00 1x22 (100,1); or 4,519

) Decoding values
) Adapt to the same exponent

) Perform operation

CENTRALE
I NANTES

Floating point numbers - addition steps

101, 1 x22 (10110)2 or 221p
+ 1 , 00 1x22 (100,1); or 4,519
110, 10 1x2? (11010, 1); or 26,51

Etapes
) Decoding values
) Adapt to the same exponent
) Perform operation
) Normalize the result

CENTRALE
LNANTES
M. Briday 2020/2021 34/224

Floating point numbers - addition steps

101, 1 x22 (10110)2 or 221p
+ 1 , 00 1x22 (100,1); or 4,519
1, 1010 1x2* (11010, 1); or 26,51

Etapes
) Decoding values
) Adapt to the same exponent
) Perform operation
) Normalize the result
) Encode result

CENTRALE
LNANTES
M. Briday 2020/2021 34/224

Floating point numbers - in an MCU

These steps are not straightforward:
) Hardware solution: Floating Point Unit

operation is fast (few MCU cycles)
better energy efficient
require some surface on the silicon (cost)

) Software: use a software lib (included in libc)

slow operation...
library requires a lot of memory (flash);
do we always need float in an MCU?

ECENTRALE
NANTES
M. Briday 2020/2021 35/224

Floating point numbers - in an MCU

These steps are not straightforward:
) Hardware solution: Floating Point Unit

operation is fast (few MCU cycles)
better energy efficient
require some surface on the silicon (cost)

) Software: use a software lib (included in libc)

slow operation...
library requires a lot of memory (flash);
do we always need float in an MCU?

Tests on a MCU Teensy 3.1 (no FPU)

For 1 million of add operations (20+6):
) 31,3 ms using int;
) 700,3 ms using float (x<22);
) 1618,7 ms using double (x51);

ASCII code for characters

American Standard Code for Information /Interchange

X0 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | xA | xB | xC | xD | xE | xF
Ox | NUL | SOH | STX | ETX | EOT | ENQ | ACK | BEL | BS | HT |LF | VT |FF |CR |SO |SI
1x | DLE | DC1 | DC2 | DC3 | DC4 | NAK | SYN | ETB | CAN | EM | SUB | ESC | FS | GS | RS us
2x ! # $ % & ' () * + , - . /
3x | 0 1 2 3 4 5 6 7 8 9 < = > ?
4x | @ A B C D E F G H | J K L M N (0]
5x | P Q R S T u Vv w X Y z [\] A _
6x ! a b c d e f g h i j k | m n o
7x P q r s t u \ w X y z { | } ~ DEL

Standard using 7 bits.

ECENTRALE
NANTES
M. Briday 2020/2021 36/224

Coding a characterin C

The type char uses 1 byte.

Depending on the compiler, it may be signed or not
char £ signed char # unsigned char

A simple character may be coded using simple """. The 3 statements are
similars:

char ¢ = 'A’; //c gets ASCII code of character A
char d = 0x41; //ASCII code using hex
char e = 65; //or decimal

The character "\" defines among others:
) '\n’ = new line;
) \\" = simple "\";
) "\0’ = NUL (end of string) [e

Coding a character string in C

The type char =* is a pointer to a 1-byte integer, or a tabular (size
unknown) of 1-byte integers.

This is the historical way to code strings. NUL is used to define the end of
string.
A character string uses ". Example:

char *xtxt="Bonjour_!";

NUL is not explicitely defined but is present in memory:

B o] n j [o] u r !

inmemory | 42 | 6F | 6E | 6A | 6F | 75 | 72 | 20 | 21 | O

CENTRALE
NANTES

Evolution: standard 1SO-8859

The ASCII uses 7 bits, so there are 128 codes available for country specific
codes

) standard 1ISO-8859-1 for Western Europe (accented characters)
) standard 1SO-8859-7 for Greece

CENTRALE
NANTES

Limits of standard 1SO-8859

) 128 codes are not sufficient. ..

) some editors use their own extension;

) itis impossible to guess whose code is used;
) how to code a text that mixes 2 languages?

The solution?

ECENTRALE
NANTES
M. Briday 2020/2021 40/224

Limits of standard 1SO-8859

) 128 codes are not sufficient. ..

) some editors use their own extension;

) itis impossible to guess whose code is used;
) how to code a text that mixes 2 languages?

The solution? Unicode!

ECENTRALE
NANTES
M. Briday 2020/2021 40/224

Developed by the Unicode Consortium, which defines a universal
character set, i.e. it aims to code all human languages. Each character
has a unique number (the code point) between 0x0 and Ox10FFFFFF It
also specifies for the properties of each code point:

) its general category (letter, marque, number, separator, command,
punctuation,symbol) ;

) the lowercaser, uppercase, corresponding title case (for a letter) ;
) its value (for a number) ;

)

The Unicode Consortium publishes free access files containing this
information. Links :

) Wikipedia : http://en.wikipedia.org/wiki/Unicode
) Consortium Unicode : http://unicode.org/
) Unicode Character Database : http://www.unicode.org/ucd/ [

NANTES

M. Briday 2020/2021 41/224

http://en.wikipedia.org/wiki/Unicode
http://unicode.org/
http://www.unicode.org/ucd/

Unicode - Memory coding

Data representation is defined by UTF: Unicode Transformation Format,
with different flavors:
UTF-32 simply using a 32-bit data:
) large;
) sensitive to endianness: UTF-32BE, UTF-32LE
UTF-16 1 or 2 16-bits words:
) memory trade-off (prefered version in memory)
) most of codes only require 1 word;
) sensitive to endianness: UTF-16BE, UTF-16LE.
UTF-8 characters 0 to 127 only use 1 byte:

) memory trade-off (prefered for files);
) ASCII compatible;
) insensitive to endianness.

ECENTRALE
NANTES
M. Briday 2020/2021 42/224

Unicode - Memory coding

Using UTF-8:

UTF-8 binary representation

Meaning

OXXXXXXX

1 byte = 7 bits

110XXXXX L1OXXXXXX

2 bytes = 8 to 11 bits

1110XXXX 1OXXXXXX 1OXXXXXX

3 bytes = 12 to 16 bits

11110XXX 1OXXXXXX 1OXXXXXX L1OXXXXXX

4 bytes = 17 to 21 bits

Example:

string str="Ecole";

E c | o

inmemory | ¢3 | 89 | 63 | 6f

6C

65

M. Briday

E CENTRALE
NANTES
2020/2021 43/224

Q Specific C language operations

ECENTRALE
NANTES
M. Briday 2020/2021 44/224

Specific C language operations

The handling of registers in C language requires some additions on the C
language to manage:

) bit-level manipulation operations;
) pointers. ..

) structured data

) static and volatile data

We will finally see the structure of an embedded program, which differs
slightly from a program running with an OS.

Some C basics blocks are given in the first section of this chapter. This is
only a remainder, and NOT a C language course!

ECENTRALE
NANTES
M. Briday 2020/2021 45/224

C variables

The type of a variable is explicitely defined in C:

uintlée_t val; //val is a 16 bit unsigned value
uintlée_t val2; //val2 i another variable

val = 12; //assignment
val += 5; //same as val = val+12
val ++; //same as val = val+l

val2 = val-1; // assignement of value val2

Note: each statement end with ;

CENTRALE
NANTES

if(condition) {
//code executed if the condition it true
} else {

//code execute if the condition is false

}

the ellse block is optional.

CENTRALE
NANTES

M. Briday 2020/2021 471224

C - condition

Example:

if(val > 12) {

//code executed if the condition it true
} else {

//code execute if the condition is false

NOTE

In C, the = is used for an assignment.
To compare 2 numbers, you need to use ==

|

if(val == 12) {
//code executed if the condition it true

o
LNZ’N?Eé""
M. Briday 2020/2021 48/224

C - loop (1)

while(condition)
{
//code executed until condition get false

}
Often used when we do not know the number of loops.

Example

while(val < 10)
{

//code executed until condition get false

}

CENTRALE
NANTES

C - loop (2)

for(initialization; condition; update} //seperator is ';’
{
//loop code

It works as:

|

initialization; //done once at startup
while(condition)
{
//1loop code
update; //done at end of loop
}

CENTRALE
NANTES

C - loop (2)

for(int i=0; i<10; i++}

{
//loop code done 10 times.
//with i from 0 to 9.

CENTRALE
NANTES

C - Function

{

//code of the function loop)) the main() function is the entry point of a program
¥)) we can not define a function inside another function
void loop()) o code outside of a function
{) the void/int is the returned value of the function
} //code of the function loop)) the compiler parses the input text sequentially: a

function should be defined before being called.
int main()) a variable may be declared outside of any function. It
{ becomes global (i.e. usable everywhere in the code
while(1)

{

Loop();

}

}

ECENTRALE
NANTES
M. Briday 2020/2021 52/224

C - Function

//function definition with parameters.
int max(int a, int b)
{

//local variable usable only

//in the function

int result;
if(a > b) {
result = a;
} else {
result = b;
}
return result; //value returned to the caller
}
int main()
{
int a;
a = max(12,34); //function call with parameters
}

CENTRALE
NANTES

C - Mixing all together

int main() //function def
{
const int threshold = 100; //constant value
int boundMin = 1000; //variable declaration with initial value
int boundMax = 0;
while(1) //loop
{
int val = readSensor(); //call a function
if(val > threshold) //test
{
alert(val);
}

boundMin = min(val,boundMin); //call
boundMax = max(val,boundMax); //call

) a variable defined inside a block {} is defined only in this block.

) indentation makes codes readable: Each time a { is started, the code
is shifted right with some space.

C - bit-to-bit NO operation

The C unary operator ~ means: bit-to-bit NO:

bit ~ bit val 0 1 1 1 1 0 1 0
0 1
1 D || e
~val

char val = 0x7A;
val = ~val; //0x85

The operation ~ inverts each bit of a data.

ot
LNANTES
M. Briday 2020/2021 55/224

C - bit-to-bit NO operation

The C unary operator ~ means: bit-to-bit NO:

bit || ~ bit val o1 (1|1 |1(06]|1]|60
0 1
1 0 ||

char val = 0x7A;
val = ~val; //0x85

The operation ~ inverts each bit of a data.

ot
LNANTES
M. Briday 2020/2021 55/224

C - Logical NO operation

The C unary operator | means: Boolean NO:

char val = 0x7A;

val = lval; 7 6 5 4 3 2 1 0
// =>val =10
val = !val; val 0 1 1 1 1 0 1 0

// =>val =0

The operation ! acts on the whole value of the variable.

E CENTRALE
NANTES
M. Briday 2020/2021 56/224

C - Logical NO operation

The C unary operator | means: Boolean NO:

char val = 0x7A;

val = lval; 7 6 5 4 3 2 1 0
// =>val =10
val = !val; val 0 1 1 1 1 0 1 0

// =>val =0

The operation ! acts on the whole value of the variable.

E CENTRALE
NANTES
M. Briday 2020/2021 56/224

C - Complementing operations

Do not confuse:
) bit-to-bit NO: ~
int x = ~val;
Each bit is complemented
) Boolean NO: !
int x = !val;

The Boolean meaning of the C language is:
0 (FALSE in C) becomes a value different from 0 (not necessarily 1!);
a value different from 0 (TRUE in C) becomes 0;

This value depends on the compiler!

ECENTRALE
NANTES
M. Briday 2020/2021 57/224

C - Shift operator <<

The binary operator ‘<<’ means: left shift:

char val = 0x7A;
char val2 = val << 2; 7 6 5 4 3 2 1
// =>val2 = OxES8;

val << 2
The n bits shift to the left:
) insert n 0 from the Lowest Significant Bit (LSB);
) same operation as multiplying to 2".

It is used to avoid calculating bit numbers:

int x = 1 << 5; // => x= 100000 in binary

C - Shift operator <<

The binary operator ‘<<’ means: left shift:

char val = 0x7A;
char val2 = val << 2; 7 6 5 4 3 2 1
// =>val2 = OxES8;

val << 2 1 1 1 0 1 0 010
The n bits shift to the left:

) insert n 0 from the Lowest Significant Bit (LSB);

) same operation as multiplying to 2".

It is used to avoid calculating bit numbers:

int x = 1 << 5; // => x= 100000 in binary

C - Shift operator >>

The binary operator '>>" means: right shift:

char val = 0x7A;
char val2 = val >> 2; 7 6 5 4 3 2 1
// =>val2 = Ox1E;

val >> 2
The n bits shift to the right:
) same operation as dividing to 2".

When a variable is signed, if the Most Significant Bit (MSB) is 1 (negative
value), the shift introduces n 1 (it keeps the sign).

LtENTRALE
NANTES
M. Briday 2020/2021 59/224

C - Shift operator >>

The binary operator '>>" means: right shift:

char val = 0x7A;
char val2 = val >> 2; 7 6 5 4 3 2 1
// =>val2 = Ox1E;

val >> 2 0] 0] 0 1 1 1 1 0

The n bits shift to the right:
) same operation as dividing to 2".

When a variable is signed, if the Most Significant Bit (MSB) is 1 (negative
value), the shift introduces n 1 (it keeps the sign).

LtENTRALE
NANTES
M. Briday 2020/2021 59/224

C - OR operator

The binary | operator means: bit-to-bit OR:

bita bitg bita or bitg
0 0 0
0 1 1
1 0 1
1 1 1

val | 0x10

5 4 0
X[X | X |0/ X [X | X | X
olofof1|(o|06|0]|O0

The OR masking allows to force one or more bits to 1.

M. Briday

CENTRALE
NANTES

2020/2021 60/224

C - OR operator

The binary | operator means: bit-to-bit OR:

bita bitg bita or bitg
0 0 0
0 1 1
1 0 1
1 1 1

bita bitg bita or bitg
0 bitg bitg
1 bitg 1

val

0x10

val | 0x10

5 4 0
X[X | X |0/ X [X | X | X
olofof1|(o|06|0]|O0

The OR masking allows to force one or more bits to 1.

M. Briday

CENTRALE
NANTES

2020/2021 60/224

C - OR operator

The binary | operator means: bit-to-bit OR:

bita bitg bita or bitg
0 0 0
0 1 1
1 0 1
1 1 1

bita bitg bita or bitg
0 bitg bitg
1 bitg 1

val

0x10

val | 0x10

5 4 0
X[X | X |0/ X [X | X | X
olofof1|(o|06|0]|O0
XX | X1]| X[X]X|[X

The OR masking allows to force one or more bits to 1.

M. Briday

CENTRALE
NANTES

2020/2021 60/224

C - OR mask : setting a bit

Example:
short a = 0x0123; //=> in binary: 0000 0001 0010 0011
a =a | 0x0004; //=> set bit 2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
s[ofofofofefofofs]ofos]o]ofo]s]1]
[
om\e\e\o\e\e\e\e\e\o\e\e\e\e\l\e\e\

HNEEEEEEEEEEEEEN

a=a| (1<<7); //=>set bit 7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

jINEEEEEEREEEEEEN

1<<7

ofofofofofofofofs]o]o]eefa]o]e]

HNEEEEEEEEEEEEEN [
NANTES
M. Briday 2020/2021 61/224

C - OR mask : setting a bit

Example:

short a = 0x0123; //=> in binary: 0000 0001 0010 0011
a =a | 0x0004; //=> set bit 2

alf\?\?\?\?\?’\ix?\E\Z\iwéxiwéxi\?
oxa[0 [[0 oo o oo o]o]e o]ell2]o]]

[ofolelofefofof2]ofefr o ofl2]x]s]

a=a| (1<<7); //=>set bit 7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sfofofofofefofofr]ofo]s]ofofr]2]n]
|

1<<7

ofofofofofofofofs]o]o]eefa]o]e]

HNEEEEEEEEEEEEEN [
NANTES
M. Briday 2020/2021 61/224

C - OR mask : setting a bit

Example:

short a = 0x0123; //=> in binary: 0000 0001 0010 0011
a =a | 0x0004; //=> set bit 2

alf\?\?\?\?\?’\ix?\E\Z\iwéxiwéxi\?
oxa[0 [[0 oo o oo o]o]e o]ell2]o]]

[ofolelofefofof2]ofefr o ofl2]x]s]

a=a| (1<<7); //=>set bit 7

15 14 13 12 11 10 9 7
o[oTo oo e o e s> s [e e [+[+]:]
|

1<<7

0‘0‘0‘0‘0‘0‘0‘@

=
=]
o |
o |
o |
o |
o |
o |

[ofefefefefo]o]:

=

0‘1‘0‘0‘1‘1‘1‘ Eggmggm
M. Briday 2020/2021 61/224

C - OR mask : setting a bit

shift and mask. ..

The use of shifting and masking operations will be required: registers are
32-bits wide!

a=a | (1<<31); //=> set bit 31
a |= (1<<31); //same operation, shorter

//set many bits at the same time:
a |= (1 <<8) | (1l<<4); //set bits 8 and 4.

ECENTRALE
NANTES
M. Briday 2020/2021 62/224

C - AND operator

The binary & operator means: bit-to-bit AND:

=
IS
=
&

bita and bitg
0 7 6 5 4 3 2 1 0

val X | X | X [0/ X | X | X | X

H = Oo|lol&

H| Ol Oo|lF

0
0
1

0x10 olofof1|(o6|06|0]|O0

val & 0x10

The AND masking allows to:

) isolate one or more bits, resetting the others for a test;

) reset 1 or more bits.

LNE’N?'E'S -
M. Briday 2020/2021 63/224

C - AND operator

The binary & operator means: bit-to-bit AND:

bita bitg bita and bitg
0 0 0
0 1 0
1 0 0
1 1 1
4
bita bitg bita and bitg
0 bitg 0
1 bitg bitg

val

0x10

val & 0x10

6 5 4 3 2 1 0
X | X 0/1] X | X | X | X
olofof1|(o6|06|0]|O0

The AND masking allows to:

) isolate one or more bits, resetting the others for a test;

) reset 1 or more bits.

M. Briday

I_ NANTES ™

2020/2021 63/224

C - AND operator

The binary & operator means: bit-to-bit AND:

bita bitg bita and bitg
0 0 0
0 1 0
1 0 0
1 1 1
4
bita bitg bita and bitg
0 bitg 0
1 bitg bitg

val

0x10

val & 0x10

5 4 3 2 1 0
X | X 0/1] X | X | X | X
olofof1|(o6|06|0]|O0
o066 |60/l |06 |0]|O

The AND masking allows to:

) isolate one or more bits, resetting the others for a test;

) reset 1 or more bits.

M. Briday

I_ NANTES ™

2020/2021 63/224

C - AND Mask: to test. ..

) Use for testing

//binary sensor associated to bit 4
int val=readSensor();
if(val & 0x10) {

}

The result of the operation (val & 0x10) is either:

0x0 FALSE in C: bit 4 of val is not set;
Ox10 TRUE in C: bit 4 of val is set

This is compatible with the condition in the if statement.

ECENTRALE
NANTES
M. Briday 2020/2021 64/224

C - AND Mask: to test. ..

Example:

//=> 1in binary: 0001 0010 0011
int a = 0x123;

//=> test bit 5

if(a & (1<<5)) {...}

11 10 9 8 7 6 5 4 3 2 1 0

l<<50|0(0]|]0]O]|]O|[1T]|]0O0|0O|0O0]|]0]O0

CENTRALE
NANTES

C - AND mask: ...and reset

) usage to reset a bit
Example: reset bit 4 of 32-bits variable val:

//not so readable..
val = val & OxFFFFFFEF;

ECENTRALE
NANTES
M. Briday 2020/2021 66/224

C - AND mask: ...and reset

) usage to reset a bit
Example: reset bit 4 of 32-bits variable val:

//not so readable..
val = val & OxFFFFFFEF;

//or simpler with the complementary operator:
val = val & ~(1 << 4);

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1<<4---’0|0|0|0|0|0|0|0|0|0|0|1|0|0|0|0‘
oo o | LTI

&
w D]

(X CENTRALE
NANTES

C - AND mask: ...and reset

) usage to reset a bit
Example: reset bit 4 of 32-bits variable val:

//not so readable..
val = val & OxFFFFFFEF;

//or simpler with the complementary operator:
val = val & ~(1 << 4);

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1<<4---’0|0|0|0|0|0|0|0|0|0|0|1|0|0|0|0‘

cawn a2 a] [o[a][]1]
& OxF OxF OxE OxF

vt D D o D o o o e o e []

(X CENTRALE
NANTES

C - AND mask: ...and reset

) usage to reset a bit
Example: reset bit 4 of 32-bits variable val:

//not so readable..
val = val & OxFFFFFFEF;

//or simpler with the complementary operator:
val = val & ~(1 << 4);

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1<<4---’0|0|0|0|0|0|0|0|0|0|0|1|0|0|0|0‘

cawn L e[[[]
& OxF OxF OxE OxF

wt D D D o o o e o R e [

---’X|X|X|X|X|X|X|X|X|X|X0

CENTRALE

C - Mask operations - Summary

set a bit => OR mask |’

// set bit 25 of a:
= a | (1 << 25);
|= (1 << 25);

reset a bit => AND mask '&’

// reset bit 25 of a:
a=a&~(1 << 25);
a & ~(1 << 25);

complementation '~’

test a bit=> AND mask '&’

// test bit 25
if(a & (1 << 25)) {
. //code executed if the bit is set

i

M. Briday

2020/2021 67/224

Mask operations exercices

ex1
Give the value of val between each line:

uintl6_t val = 0x4567;

val = val | 0x1513;
// val =>

val = val & OxFF22;
// val =>

ex?2

Give the value of val2:

uintl6_t val2 = 0x74F0;
val2 = val2 & ~(0xF <<8) |
// val2 =>

(OxA <<8)

’

M. Briday

2020/2021 68/224

Mask operations exercices

ex3

val is an input value (unknown) of type uint16_t Write the code to set
bits 4 and 5 of val:

val =

Write the code to reset bits 7 and 8 of val:

val =

Write the code to both set bits 4 and 5, and reset bit 2 and 3 of val

val =

EEENTRALE
NANTES
M. Briday 20202021 69/224

C - Pointer basics

A data in memory holds 2 data:
the address of val is 0x34;
the value of val is 0x4C (0100 1100);
With C language:
The assignment of value 0x12 at address 0x34

char val = 0x4C;

A pointer is a variable that contains the address of another
variable

v

To define a variable b that store the address of val, we write:
int b = &val; // b=0x34

But, we have no information of the type (char, int, ...), only
its address.

addresses

ox33

ox3a

0 ‘ 1 ‘ 0 ‘ 0 ‘ 1 ‘ 1 ‘ 0 ‘ 0

al

<

ox35

Note: we simplify here with variables/addresses on 8 bits... but the data are on 32 bits in reality!

M. Briday

E CENTRALE
NANTES
2020/2021 70/224

C - Pointer basics (2)

Pointers allows to know the type of the data. It contains:
) the type of the data that is pointed;
) a * to show that it is a pointer;
A pointer stores an address, so pointers have all the same size:
intx x; //x is a pointer to an integer
charx x; //x is a pointer to a character

//x is a pointer to a 8-bits unsigned integer:
unsigned charx x;

CENTRALE
NANTES

M. Briday 2020/2021 71/224

C - pointer basics (3)

To remember

) & means "the address of*: & <> address of variable a.

charx b; //b is a pointer to a char
b = &val; // b=0x34

In this way, b is a pointer to a char data. And val type is char...

ECENTRALE
NANTES
M. Briday 2020/2021 72/224

C - pointer basics (3)

To remember
) & means "the address of*: & <> address of variable a.

) x allows to "dereference un pointer"

charx b; //b is a pointer to a char
b = &val; // b=0x34

In this way, b is a pointer to a char data. And val type is char...
Dereference a pointer means access to the pointed value.
We can then do the manipulations:

*b = 0x12; //dereference a pointer

We write value 0x12 in the address pointed by b:
) b always contains the address of val;
) the value of val is modified. Eﬁimsm

M. Briday 2020/2021 72/224

C - arrays

An array is a contiguous list of elements of the same type. To
define a tabular with 10 unsigned 8-bits integers:

unsigned char tab[10]; addresses
We can get a data in the array with its index. Here, val gets
the value from data at addres 0x36.

I
I
I
I

-

unsigned char val = tab[2];

o0x34 tab[0]
Pointers? feet
The name of an array is a pointer, which points to the first tab[2]
element of the array tab[3]

As a consequence, type of tab is unsigned char *

and:
) tab[e] <=> xtab
) tab <=> &tab[0]

ECENTRALE
NANTES
M. Briday 2020/2021 73/224

C - Type definition

Custom types may be defined with the typedef keyword:

//definition of type 'byte’
typedef unsigned char byte;

We enhance basic types. The definition of a variable respects the same
syntax:

int a;

byte b; //like an unsigned char

a = 0x1234;
b =12;

Note: Redefined types such as uint32_t are found in the standard C library to
compensate the lack of portability of data sizes: int can be 16 or 32 bits depending on

the architecture.
| CENTRALE
NANTES

M. Briday 2020/2021 74/224

C - Structures (1)

The C language allows to define basic scalar types (char, int, ...) and
homogeneous arrays.

It allows to declare structured types with the keyword struct:

typedef struct {

int datal;

char data2;

unsigned char data3;
} newStruct;

From this structure definition, we can instantiate a variable:

newStruct myVar;

CENTRALE
NANTES

C - Structures (2)

To access the different fields of
the structure, we use the
notation:
addresses

// type int !
myVar.datal = 4; |
// type char .
myVar.data2 = 'c’; //=0x63 M
// type unsigned char newStruct datal
myVar.data3 = 33; 0x1234| 0000 0000 (int)

0x1235 0000 0000

0x1236 0000 0000

myVar
0x1237 0000 0100
data2
0x1238 0110 0011 (char)
data3
0x1239| 0010 0001 (unsigned char)
-(ENTRALE
NANTES

C - Structures (3)

To access a structure field, a pointer should be dereferenced:

(*xGPIOA) .MODER = ...
A simplified writing is available in C (completely equivalent):

GPIOA->MODER = ...

CENTRALE
NANTES

M. Briday 2020/2021 77/224

C - Unions

The union keyword in C language allows to use the
same memory location with different forms.

typedef union

{
unsigned int u;
float f;
unsigned char c[4];
} type32;

a type32 variable needs 32 bits that may be
interpreted in different ways:

)) an unsigned 32 bits value: type32.u

» a 32 bits float value (norm ieee754p):
type32.f

) an array of 4 unsigned 8-bits values:
type32.c[0]...

M. Briday

addresses

+

type32 u
unsigned
int

0x1234

0x1235

0x1236

0x1237

£
float

clel

cl[1]

cl2]

c[3]

Example:

type32 val;
val.u = 0x12345678; //int
val.c[2] = OxAA;

= val = 0x1234AA78;

[

val

CENTRALE
NANTES

2020/2021 78/224

Example:

int vall= 0; //global variable : accessible anywhere

void functionl()
{
vall++; //vall = number of calls to the function

}

void function2()
{
int val2 = 0; //local variable
val2 ++; //val2 =1
} //val2 est destroyed: access only IN function2()

void function3()
{
//init only done the first time
static int val3 = 0;
val3 ++; //val3 = number of calls to the function
} //variable not destroyerd! access only IN function3() Eﬁwg\LE

C- modificator

During code generation, the compiler makes optimizations to speed up
code execution, in particular:

) removing unnecessary code;

) instantiate variables directly into CPU general purpose registers for a
faster access.

Behavior

The keyword volatile constrains the compiler to effectively perform the
memory access.

Example:

volatile int i;
for(i=0;1<1000;i++);

Without the volatile keyword, le compiler can remove the waitting
loop... because it wastes time! |:

CENTRALE
NANTES

C - Structure of an embedded code

An embedded code should never terminate. In this way, the main function
has in most cases the following form:

int main()
{

setup(); //function run only once
while(1) {

. //code executed inside a loop

) function setup() init peripherals;

) code inside the loop while(1) is a never-ending process.

CENTRALE
NANTES

C - To go further. ..

Arduino uses a dialect of C/C++, named wiring. There are few differences
between Wiring and C++.
There are many tutorials and guides for C / C++ / Wiring programming:

) C tutorial: http://www.zentut.com/c-tutorial/
) C++ tutorial: http://www.cplusplus.com/reference/

) Arduino reference: https://www.arduino.cc/reference/en/

ECENTRALE
NANTES
M. Briday 2020/2021 82/224

http://www.zentut.com/c-tutorial/
http://www.cplusplus.com/reference/
https://www.arduino.cc/reference/en/

Q General Purpose I/O

ECENTRALE
NANTES
M. Briday 2020/2021 83/224

parallel ports

Objective

Parallel ports allow to control the pins of the microcontroller in On-Off

mode

Basic example of a garage door:

mur

interface de
puissance
o .
| capteur niveau haut
porte | »

roulante

| e

JE—
 capteur niveau bas STOP

[sol |

&

M. Briday

)) 5 inputs:
2 high and low level limit
switches;
3 push buttons (human /
Machine interface).

)) 2 outputs:
motor control (up, down,
stop) through a power
interface.

CENTRALE
NANTES

2020/2021 84/224

Parallel port

The access is bi-directionnal and can be configured as:
input (point of view of the pC) to get an information:

) limit switches;
) state of a push button.

ouput to control an external peripheral:

) command a LED;
) digital device through several logical lines

It's a parallel port because it is possible to control several pins at the
same time.
It is also defined as General Purpose //0.

CENTRALE
NANTES

I/O architecture on the STM32F303

r— - - — — — — — — — — hl
Analos
To on-chip At l l
peripheral g Alternate function input | [
5 : on/off :
¢ Read %)—(I Vi
I | | T Vpp DD
<
kS
g bt I trigger i ﬁl Protection
b 5 99 on/o diode
&l g | |
Write g B lnputdriver __ __ _ _ _ _ __ __ - 1/0 pin
> 2 e -t _ _ _ _ _ _ _ _ _
§ g’ I—Output driver
3 55 | Protection
& S diode
3 [Output
— = | control
(]
Read/write |
Vss
. E— Push-pull
From on-chip | o |
N : open-drain or
peripheral Alternate function output ______ diabled nalog

ai15938

ECENTRALE
NANTES
M. Briday 0/2021 86/224

I/0 ports on STM32-F303-K8

Many ports are available (A to F on the STM32F303K8), but potentially
many more:

) This is a 32-bit pC, but can only control up to 16 pins at the same time
ex: pin PA15: on/off pin 15 of port A.

) Some pins may have no physical output.
ex: PB2 is not available

) logical levels are:
logic 0 = 0V;
logic 1 = 3.3V (Warning, not TTL compatible!).

LQFP32 21PN

ECENTRALE
NANTES
M. Briday 2020/2021 87/224

I/O ports

Each pin needs a configuration:
reset input floating
input with 3 configurations:
) input floating;
) input pull-up (a resistor that pulls the electric potential
to VCCQC)
) input pull-down (a resistor that pulls the electric
potential to GND)

output with 2 configurations:

) push/pull
) open-drain

Each configuration is detailed hereafter.

ECENTRALE
NANTES
M. Briday 2020/2021 88/224

3 states output

A 3-state output can be schematized as follows:

B

)

R RlololD>
RO~ ol @
~ N|o|INlWn

If B is not set (B=0), the output is high impedance (Z).

CENTRALE
NANTES

input with Schmitt trigger

a Schmitt trigger is a comparator circuit with hysteresis:

%)

It is used to ensure the stability of a logic signal when the input (l) is
located between the low (T;) and high (Ty) thresholds, zone between 0
and 1 logic.

TH oyt S >
TN >
[0}
logic
E CENTRALE
NANTES

Pin configuration

Each pin of a GPIO port has independant configuration bits:
MODER MODE Register: input/output/alternate function. ..
OTYPER Output TYPE Register: push-pull or open drain
OSPEEDR Output SPEED Register
PUPDR Pull UP [/ Down Register: enable a pull resistor.
Data registers are:
IDR Input Data Register: get input value of the whole port
ODR Output Data Register: get output value of the whole port
BSRR Bit Set Reset Register: bit access to the port

ECENTRALE
NANTES
M. Briday 2020/2021 91/224

Initial state

Each GPIO port is disabled at reset, and a clock source should be given to

the port (see secction 5).
The RCC (Reset and Clock Control) peripheral is used. GPIOs are
connected to the AHB port:

RCC->AHBENR |= RCC_AHBENR_GPIOBEN_Msk; //clock for GPIOB
//wait until GPIOB clock is Ok.
_asm("nop");

You have to replace the .. .GPIOBEN. .. symbol with the appropriate port.

E CENTRALE
NANTES
M. Briday 2020/2021 92/224

Output access

address

Up to 16 pins may be controlled in simultaneously. .. < in parallel!

Mask operations will be required to avoid overwriting a previous
configuration

Output access

address

pin 5 of the GPIO

Up to 16 pins may be controlled in simultaneously. .. < in parallel!

Mask operations will be required to avoid overwriting a previous
configuration

Output access

address
I
I
v
pin 5 of the GPIO
dir (] 1 1 1 1 0 0
’ 6 s 4 3 2 1 o
out 0 il 1 0 b 0 il
7 s s s 3 2 1 o

Up to 16 pins may be controlled in simultaneously. .. < in parallel!

Mask operations will be required to avoid overwriting a previous
configuration

Output access

pin of the GPIO

pin of the GPIO
address

! pin of the GPIO

pin of the GPIO

pin of the GPIO

pin of the GPIO

pin of the GPIO

pin of the GPIO

il

Up to 16 pins may be controlled in simultaneously. .. < in parallel!

Mask operations will be required to avoid overwriting a previous
configuration

MODE Register

MODER (MODE Register) uses 2 bits to configure the mode for each pin:

31 30 29 28 27 26 25 24 23 22

21 20 19 18 17 16
MODER15[1:0] | MODER14[1:0] | MODER13{1:0] | MODER12[1:0] | MODER11[1:0] | MODER10[1:0] | MODERQ[1:0] | MODERS[1:0]
w [w w [w wo [w [w w [w [w W [w [W
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 [

MODER7[1:0] | MODER6[1:0] | MODERS[1:0] | MODER4[1:0]

MODER3[1:0] | MODER2[1:0] | MODER1[1:0] | MODERO[1:0]

w [w [w [w [w v w[w [w]w][w]w][w]w]w][w

00 Input mode
01 output mode

10 alternate function mode (see section 6)
11 analog mode

CENTRALE
NANTES

Output type Register

OTYPER Output TYPE Register selects the push-pull or open drain output:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

[Res. [Ree. [Res. | Res. [Res |
N N I N

\ |

\ |

5 14 138 12 N 10 9

[lom15 [ot14 [o113 [oTi2 [ottt [oTi0 | ot | ots
\]

W [w [w [

0 push-pull
1 open-drain

Only the low 16 bits are used.

ECENTRALE
NANTES
M. Briday 2020/2021 95/224

PUPDR Register

PUPDR Pull UP / Down Register

31 3 20 28 27 26 25 2 23 2 2 20 19 18 17 16
‘ PUPDR15[1:0] \ PUPDR14[1:0] \ PUPDR13[1 01| PUPDR12[1:0] [PUPDR11[1:0] ‘ PUPDR10[1:0] | PUPDRO[1:0] ‘ PUPDRS[1:0] \
[T Lo Tow fow [w Lo Iow Lo [ow [[ow [[ow e []

5 14 138 12 11 10 9 8 7 6 5 4 3 2 1 0
\ PUPDR7[1:0] \ PUPDR6[1:0] \ PUPDRS[1:0] | PUPDR4[1:0] \ PUPDR3[1:0] \ PUPDR2[1:0] | PUPDR1[1:0] \ PUPDRO[1:0] \
I N N R B A A B e

00 no pull-up, no pull-down
01 pull-up
10 pull-down

11 reserved

ECENTRALE
NANTES
M. Briday 20/2021 96/224

Output Data Register

O0DR Output Data Register controls the output state of the pin:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

rrrrrer T
L r r [T [[T T |

\ [Res |
\ [
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[opR15] ODR14 | 0DR13 [0DR12] ODR11[ODR10| ODR9 | ODR8 [ODRY | ODR6 | ODRS [ODR4 | ODRS | ODR2 [ODR1 | ODRO |
[[o]

[[[w [wo [[[w [[w [[w [[w

w

0 outputis low
1 outputis high
Only the low 16 bits are used.

ECENTRALE
NANTES
M. Briday 2020/2021 97/224

Output configuration are:

MODER | OTYPER | PUPDR | state
01 0 00 | output - push-pull
01 0 01 | output - push-pull + pull-up
01 0 10 | output - push-pull + pull-down
01 0 11 | reserved
01 1 00 | output - open-drain
01 1 01 | output - open-drain + pull-up
01 1 10 | output - open-drain + pull-down
01 1 11 | reserved

M. Briday

CENTRALE
NANTES

2020/2021 98/224

Example: LED access

A led is available on the board, on PB3. This is a basic push-pull
configuration.
Reset state of MODER is 0x0000.

//output configuration

GPIOB->MODER |= 1 << (3x%2); //PB3 output

//or (better)

GPIOB->MODER |= 1 << GPIO_MODER_MODER3_Pos; //PB3 output
//or (even better)

GPIOB->MODER &= ~GPIO_MODER_MODER3_Msk; //reset PB3 mode
GPIOB->MODER |= 1 << GPIO_MODER_MODER3_Pos; //PB3 output

light the LED:

//output high
GPIOB->0DR |= 1 << 3;

turn off the LED:
//output low
GPIOB->0DR &= ~(1 << 3); EtENTRALE

NANTES

Selective access to a port

To prevent mask operations, register BSRR (Bit Set/Reset Register) allows
to update a single bit (hardware mask operation)

31 30 20 28 27 26 25 24 23 2 20 20 19 18 17 16
[[BR15 [BR14 [BR13 [BR12 [BR11 [BR10 | BR9 [BR8 [BR7 [BR6 | BRS | BR4 | BR3 | BR2 | BR1 | BRO

[B0 |
[w [wlwlwlwlwlwlwlwlwlw]lwlw[w]w]w]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
[[Bst15 [Bs14 [Bs13 | Bst2 | Bst1 [Bst0 [Bso | Bss | Bs7 | Bse | Bs5 | Bs4 | BS3 | BS2 | Bst | BSO‘
[v]

[w [w [w]w v w] wlwlw]lwlwlw]wlw]w~

w

BSx Bit Set
BRx Bit Reset

Hardware mask

) Writing a 1 performs the operation (set/reset)
) Writing a 0 does not update the GPIO

ECENTRALE
NANTES
M. Briday 2020/2021 100/224

Selective access to a port

Moreover, BSRR access is atomic: example:

//switch off LED
GPIOB->0DR &= ~(1 << 3);

is translated into asm code:

ldr r3, [rl, #20]
bic.w r3, r3, #8
str r3, [rl, #20]

What happens if there is an interrupt between the load and the store
instructions?

CENTRALE
NANTES

M. Briday 2020/2021 101/224

Selective access to a port

Moreover, BSRR access is atomic: example:

//switch off LED
GPIOB->BSRR = 1 << (3+16); //reset PB3

is translated into asm code:

mov.w r4, #524288 ; 0x80000

str r4, [rl, #24]

Atomic access
There is no side effect during the access. No need to protect the variable

access.

| CENTRALE
NANTES
M. Brida 2020/2021 102/224
y

Exercice - Bargraph

8 LEDs are connected to the pins PBO to PB7. The objective is to use LEDs
to represent a value in the form of a bargraph:

val < max/8 max/8 <= val < 2*max/8 val >= max

— S
] 2,
I %

We consider that the value to be displayed value is most of the time
between 0 and a value max which is a parameter of the procedure.

ECENTRALE
NANTES
M. Briday 2020/2021 103/224

Exercise - Bargraph

The routine is bargraph:
void bargraph(unsigned int value, unsigned int max);

Following the value of the parameter value, we have:
) if value < T2 then no led is on;
) if T < value < 2T, only the first led is on;
) if 2.1 < value < 3T, the first 2 leds are on;
) .
) if value > max, all the leds are on;
Note: You can implement the function:
) first listing all cases itertively (list of if)
) then with a loop
) or directy, by identifying the number of leds to light

CENTRALE
NANTES

M. Briday 2020/2021 104/224

Correction - exercise Bargraph

void bargraph(unsigned int value, unsigned int max)
{
//init
PORTB->MODER |= 0x5555;
unsigned int nbLed = (valuex8)/max;
if(nbLed>8) PORTB->BSRR = OxFF;
else {
const unsigned int mask = (1 << nbLed) - 1;
PORTB->BSRR = mask | (~mask & OxFF) << 16;
}
}

M. Briday

CENTRALE
NANTES

2020/2021 104/224

As seen in the GPIO internal structure (slide 86), the input driver:
) inserts a Schmitt trigger before the logic part
) is configured with MODER (config 00)
) may use the push-pull resistors (PUPDR)

ECENTRALE
NANTES
M. Briday 2020/2021 105/224

Input Data Register

IDR /nput Data Register returns the input state of the pin:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

[Res. [Res. [Res | Res. [Ros. [Res. | Res. [Res [Res [Res [Res. | Res. | Res |
T T [T T 1

[[
[\
5 14 138 12 1 10 9 8 7 6 5 4 3 2 1
[1DR15 [IDR14 [IDR13 [IDR12 [1DR11 [1DR10 [1DR9 | 10R8 | 1DR7 | IDR6 [IDR5 | IDR4 [1DR3 [IDR2 | IDR1 | IDR0
[|

IR

0 inputis low
1 inputis high
Only the low 16 bits are used.

ECENTRALE
NANTES
M. Briday 2020/2021 106/224

Exercise - push button

We consider a basic push-button:

button 1

_J__ PA4

> What is the configuration of the pin PA4?
> How to read the button state?

ECENTRALE
NANTES
M. Briday 2020/2021 107/224

Exercise - push button

If we don’t press the button, the state is in high impedance. The pull-up
resistor is mandatory!

void setup() {
RCC->AHBENR |= RCC_AHBENR_GPIOAEN_Msk; //clock for GPIOA
—asm("nop"); //wait until GPIOA clock is Ok.
GPIOA->MODER &= ~GPIO_MODER MODER4_Msk; //PA4 as input (0)
GPIOA->PUPDR &= ~GPIO_PUPDR_PUPDR4_Msk; //reset pupd for PA4
GPIOA->PUPDR |= 1 << GPIO_PUPDR_PUPDR4_Pos; //pull-up for PA4

CENTRALE
NANTES

Exercise - GPIO driver

The objective of a driver is to hide the complexity of accessing
configuration registers and to offer high-level functions. The 3 functions
to manage inputs/outputs are inspired by the Arduino universe:
pinMode allows to configure a pin (input/output with pull up/down
resistor)

digitalWrite sets an output pin state

digitalRead reads in anput pin state

5 modes are defined (in pinAccess.h):

#define DISABLE 0
#define OUTPUT 1 //only push/pull mode
#define INPUT 2

#define INPUT_PULLUP 3
#define INPUT_PULLDOWN 4

E CENTRALE
NANTES
M. Briday 2020/2021 109/224

Exercice - pinMode

Give an implementation of the 3 functions:
int pinMode(GPIO_TypeDef x*port,
unsigned char numBit,
unsigned char mode);
int digitalWrite(GPIO_TypeDef x*port,
unsigned char numBit,
unsigned char value);
int digitalRead(GPIO_TypeDef xport,
unsigned char numBit);

Where:
port refers to the hardware mapped structure: GPIOA, ...
numBit is the bit number: 0 to 15
mode is the defined mode (previous slide)
value is the output value (true/false as in C)

Particular attention should be paid to unexpected values (access to pin 54
for instance...).

M. Briday 2020/2021 110/224

Exercice - pinMode

int pinMode(GPIO_TypeDef x*port,
unsigned char numBit,
unsigned char mode)

//check arguments

if (!IS_GPIO_ALL_INSTANCE(port)) return -1;
if(numBit >) return -1;

//

switch(mode)

{
case DISABLE: //MODER = 0, PUPDR = 0

break;
case OQUTPUT: //

break;

CENTRALE
- NANTES

M. Briday 2020/2021 111/224

Correction - pinMode

int pinMode(GPIO_TypeDef x*port,
unsigned char numBit,
unsigned char mode)

int mask2Bits; //mask for 2bit fields
//check arguments
if (!IS_GPIO_ALL_INSTANCE(port)) return -1;
if(numBit > 15) return -1;
//
mask2Bits = (3 << (numBitx2));
switch(mode)
{
case DISABLE: //MODER = 0, PUPDR = 0
port->MODER &= ~mask2Bits;
port->PUPDR &= ~mask2Bits;
break;
case OUTPUT: //MODER = 1, PUPDR = 0
clockForGpio(port);
port->MODER &= ~mask2Bits;
port->MODER |= (1l<<(numBit*2));
port->PUPDR &= ~mask2Bits;

break;
! ECENTRALE
- NANTES

M. Briday 2020/2021 111/224

Exercice - digitalWrite

void digitalWrite(GPIO_TypeDef xport,
unsigned char numBit,
unsigned int value)

{
if (!IS_GPIO_ALL_INSTANCE(port)) return;
if (numBit >) return;

CENTRALE
NANTES

M. Briday 2020/2021 112/224

Correction - digitalWrite

void digitalWrite(GPIO_TypeDef xport,
unsigned char numBit,
unsigned int value)

if (!IS_GPIO_ALL_INSTANCE(port)) return;
if(numBit > 15) return;

if(value) port->BSRR = 1 << numBit;
else port->BSRR = 1 << (numBit+16);

CENTRALE
NANTES

M. Briday 2020/2021 112/224

Exercice: Using an FSM

We use here a Finite State Machine (FSM) to get information about a push

button:
Let the following FSM: The FSM has 4 states, with 2 of them PUSH and RELEASE only
for 1 cycle.
PB1 ==
PB1 ==
Refresh
period of
the FSM
Exercice GPIO with FSM
Write a program that toggles the state of the LED (PB0) each
PB1 == time the push button is pushed. The refresh frequency will
be ~100Hz.
We consider here that there is a function delay (xx) to wait
for xx ms.
[N e
PB1 ==

M. Briday 2020/2021 113/224

Exercice: Using an FSM

We use here a Finite State Machine (FSM) to get information about a push

button:
Let the following FSM: The FSM has 4 states, with 2 of them PUSH and RELEASE only
for 1 cycle.
PB1 ==
PB1 ==
Refresh
period of
the FSM
Exercice GPIO with FSM
Write a program that toggles the state of the LED (PB0) each
PB1 == time the push button is pushed. The refresh frequency will
be ~100Hz.
We consider here that there is a function delay (xx) to wait
for xx ms.
[N e
PB1 ==

M. Briday 2020/2021 113/224

Exercice: Using an FSM

Implementation with a dedicated function:

enum PBState {OFF, PUSH, ON, RELEASE};

//return button state
enum PBState managePBO(){
static enum PBState state =
switch(state) {
case OFF:
break;
case PUSH:
break;
case ON:
break;
case RELEASE:
break;

}

return state;

E CENTRALE
NANTES
M. Briday 2020/2021 114/224

Exercice: Using an FSM

Implementation with a dedicated function:

enum PBState {OFF, PUSH, ON, RELEASE};

//return button state
enum PBState managePBO(){
static enum PBState state = OFF;
switch(state) {
case OFF: if((GPIOB->IDR & 0x2) == 0) state
break;
case PUSH: state = ON;
break;
case ON: if(GPIOB->IDR & 0x2) state
break;
case RELEASE: state = OFF;
break;

PUSH;

RELEASE;

}

return state;

E CENTRALE
NANTES
M. Briday 2020/2021 114/224

Q Clock Sources

ECENTRALE
NANTES
M. Briday 2020/2021 115/224

Devices are sequential systems that require a clock source.

The current trend of pc founders is to limit consumption as much as
possible. This requirement leads to certain technological choices:
) Reduce core consumption

fine management of the core’s sleep modes;
peripheral functions without core use (DMA, sleepWalking,...).

) reduce the consumption of devices

turn off the power to unused devices;
cut off the clock source;

ECENTRALE
NANTES
M. Briday 2020/2021 116/224

Clock Tree of the STM32F303K8

FLITFCLK
to Flash programming interface
Hsl
SYSCLK 1012Cx (x =1,2)
128SRC
25 CKIN Ext. clock 10 125x (x = 2,3)
o USBCLK
rescaler
SWHz] HS! e to USB interface
HsI Re]
1z
HCLK to AHB bus, core,
memory and DMA
PLLSRC 1o cortex System timer
PLLMuL FHOLK Cortex free
PLL running clock
@] P PO, (5 Rp8" porpherals
x16
SYSCLK
Py I (APB1 prescaler|_, 1, T 2,3.4.6.7
e)x1 else x2
PCLK1
0sC_ouT Py SVSCHLS*E » 10 U(S)ARTX (x = 2..5)
-32 MHz %
LSE
0SC_IN [}|HSE 0SC|
APBZ
prescaler [+ P2 10 APB2 peripherals
11.2.4.8.16
05C32IN [([H sz oso RTCCLK , 15 RTC
oscaz_out [[1-{?2768kHZ] LSE P2 oAy to TIM 15,16.17
RTCSEL[1:0]
LSIRC LS| IWDGCLK
40kHZ 10 IWDG
/2}-PLLCLK
HS!

Clock Tree

Clocks should be configured at startup for
) the main core clock;
) devices clocks;

Let’'s have a look at the SystemInit() function.

ECENTRALE
NANTES
M. Briday 2020/2021 118/224

Contents

@ Pin muxing

ECENTRALE
NANTES
M. Briday 2020/2021 119/224

Some devices use pins of the microcontroller as input or output.
) By default, a pin is used as a GPIO (digital input/output).

) We should know which device will use the pin
) Some devices may have pins that are driven to different physical
pins (easier electronic schema)

example: The first pin of the serial communication of this pC
(SAMD21J18A) can be affected to physical pins PAO or PA16.

ECENTRALE
NANTES
M. Briday 2020/2021 120/224

Hardware part. ..

r—- - - — — — — — — — — T
To on-chip Alternate function input | |
peripheral <
I | on l
Read . ‘)/I |
<+—= J
o ‘ - | Vpp VDD
©
® 2 \ TTL Schmitt [on/oft
8 3 trigger protection
£ g \ | diode
g Ulnputdriver |
B s __ _ _ _______F /O pin
@ 'gu '_Oulput driver Vbp
= e
3 |
2] < .
= ki protection
@ 3 | qL_ p-mos | diode
5 Output
= | control | Ves Vgg
—| N-MOS
Read/write o | |
h-pull or
Vgg Push-pull
From on-chip : [open-drain
peripheral Alternate function output

ECENTRALE
NANTES
M. Briday 0/2021 121/224

...and software part

The founder allows up to 16 alternate configurations for each pin, called
AFO to AF15.

2 registers should be updated:
) MODER register (slide 94), with configuration 10

) AFRL (and AFRH) that gives the alternate configuration number, from

0 (AF0) to 15 (AF15), for respectively the lowest 8 pin numbers and
the highest ones.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
AFR7[3:0] AFR6[3:0] AFR5([3:0] AFRA[3:0]

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
AFR3[3:0] AFR2[3:0] AFR1[3:0] AFRO[3:0]

CENTRALE
NANTES

M. Briday 2020/2021 122/224

Q Timer

CENTRALE
NANTES

M. Briday 2020/2021 123/224

) Provide a time base (timer):

perform a precise standby function;

generate a periodic behavior such as flashing an LED, sending a
periodic message, ...

) Counting events (counter):
number of engine revolutions in a car

) With some additional logic, create more advanced functions such as:
timestamp with a capture input;
with a comparator, a Pulse Width Modulation (PWM) signal (— chapter
p. 8);
decode a quadrature signal (encoder sensor);
measurement of the width of a pulse (high state duration).

CENTRALE
NANTES

M. Briday 2020/2021 1247224

Basic principle

) the timer value increases/decreases periodically;

) When the timer reaches its maximum value, its value is reloaded (not
necessarily at 0)

timery
flag flag
maxX
resolution tl mq:ﬁwgnsm

M. Briday 2020/2021 125/224

Timer resolution

) the timer resolution is the time required to change its value by one
unit;

) A timer usually offers a prescaler of the input frequency to set the
resolution:

If the frequency divider is high, the timer resolution is higher and the
timer takes longer to reach its maximum value;

If, on the other hand, the frequency divider is low, the timer resolution
is smaller, and the time measurement is more accurate.

The presclare makes no sense if an external signal is used as input.

internal clock

counter
timer

external sighal —)

ECENTRALE
NANTES
M. Briday 2020/2021 126/224

timer overflow

A timer overflows when:

) its value gets from its maximal value to its reload value (overflow),
when counting;

) its value gets from 0 to its reload value (underflow), when decounting

A flag signals that an overflow/underflow has occured. This flag can be
used either under interrupt (see chapter p.1), or with software (polling).

timery
flag flag
" r
maXx
o \

A
time
CENTRALE
E NANTES

M. Briday 2020/2021 127/224

The capacity of the timer is the set of values it can take. A N-bits timer
have its values in:

[0;2 — 1]
In general, values for N are:
) 8 bits = from 0 to 255;
) 16 bits = from 0 to 65 535;
) 32 bits = from 0 to 4 294 967 295;
) 64 bits = from 0 to ... (read only usage).
We will use 16-bits and 32-bits timers here.

CENTRALE
NANTES

M. Briday 2020/2021 128/224

Different timer kind

On the STM32F303 target, different kind of timers are provided from basic
to more advances timers:

) basic timers (low complexity, limited features): TIM6, TIM7
) General purpose timers (medium complexity): TIM2, TIM3
) General purpose timers (other features): TIM15, TIM16 and TIM17
) Advanced purpose timers (many features): TIM1, TIM8 and TIM20

ECENTRALE
NANTES
M. Briday 2020/2021 129/224

Basic timers TIM6, TIM7

) 16 bit, only up counter, with auto-reload

) can be linked to the DAC

Trigger

Internal clock (CK_INT) controller

TIMxCLK from RCC

TRGO

———————— to DAC

Reset, enable, Count

Control

Ul

Auto-reload register |

ul
A
Stop, clear or up U
~h

prescaler

M. Briday

CK_PSC
= CK_CNT |+ CNT counter

ECENTRALE
NANTES
2020/2021 130/224

Clock Tree

The main input clock for each timer should be first enabled (see p. 117):

//input clock = 64MHz.

RCC->APB1ENR |= RCC_APB1ENR_TIMGEN;
—asm("nop");

//reset peripheral (mandatory!)
RCC->APB1RSTR |= RCC_APB1RSTR_TIM6RST;
RCC->APB1RSTR &= ~RCC_APB1RSTR_TIMGRST;
_asm("nop");

E CENTRALE
NANTES
M. Briday 2020/2021 131/224

Control register CRx

CR1 Control Register 1

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

UIF

RE- ARPE OPM URS ubis CEN
MAP

w w w w w w

OPM One Pulse Mode: counter stops at next overflow
CEN Counter enable: should be setto 1
CR2 Control Register 2

I N N A L 0
L rrrr e~

Not used here.

CENTRALE
NANTES

M. Briday 2020/2021 132/224

Prescaler Register PSC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PSC[15:0] ‘

[v v [w[w [w][w][w[w[w[w[w][w][w[w[m™m]w]

The PSC prescaler register is a 16-bit register that divides the input
frequency by a programmable factor from 1 to 65535:

fpsc

fng = ———2¢
N psC[15: 0] + 1

ex: if PSC=63, the input frequency for the counter CNT is 1MHz.
Note:On most micro-controllers, the prescaler is a power of 2

CENTRALE
NANTES

ARR / CNT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ CNT[15:0] ‘

[w [w [w [w [ow [w [w [w [w [w [ow [w [ow [ow [w][w |

The CNT register contains the current value of the timer (16-bit R/W
register).
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0] ‘

[vTow[w[w[w][w][w [w[w ow][w[w[w[w~]w]w]

The ARR (Auto Reload Register) is the max value of the CNT register: the
CNT register counts from 0 to ARR (ARR+1 units).

M. Briday 2020/2021 134/224

Status Register SR

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

rrrrrrrrr e e
. rrrrrrr T fewe]

UIF the flag is set when the timer overflows (from ARR to 0):
Update Interrupt Flag.

The flag should be reset by software:

TIM6->SR = 0; //reset UIF

ECENTRALE
NANTES
M. Briday 2020/2021 135/224

Registers summary

register | field | bit | function

CR1 | CEN | © Count ENable.

PSC prescaler (frequency divider)

SR | UIF | O overflow flag

CNT timer current value

ARR Auto Reload Register
CNT..

UIF=1 UIF=1
r 7
ARR
0 -
resolution time [N e

Exercice - Implement a delay function

We want ro implement a function that performs a simple delay. The input
clock is set to 64MHz.

> What is the max delay that can be done (with one timer loop only)?
> Implement a function that simply waits:

//ms in milli-seconds
//ms should be <= 60 000
void delay(unsigned int ms);

ECENTRALE
NANTES
M. Briday 2020/2021 137/224

exercice 1

void delay(unsigned int ms);

{

ECENTRALE
NANTES
M. Briday 2020/2021 138/224

Correction - exercice 1

void delay(unsigned int ms);
{
//check argument
int arr = ms;
if(arr > 60000) arr = 60000;

//input clock = 64MHz.

RCC->APB1ENR |= RCC_APB1ENR_TIM6EN;
__asm("nop");

//reset peripheral (mandatory!)
RCC->APB1RSTR |= RCC_APB1RSTR_TIM6RST;
RCC->APB1RSTR &= ~RCC_APB1RSTR_TIM6RST;

—_asm("nop");

TIM6->PSC = 64000-1; //prescaler : tick@lms
TIM6->CNT = 0;

TIM6->ARR = arr-1; //auto-reload: counts 100 ticks

TIM6->CR1 |= TIM_CR1_CEN; //config reg : enable
while(! (TIM6->SR & TIM_SR_UIF)); //wait...

E CENTRALE
NANTES
M. Briday 2020/2021 138/224

Synchronization

Objective

Include the calculation inside the waiting function, so as not to
accumulate delays.

Example: a process requires from 1 to 3 ms, and should be repeated each
10ms...

CNT.
UIF=1 UIF=1
ARR /
0 ﬁf / ,>
resolution time

processing
wait wait
¢ i { i N

CENTRALE
NANTES

Synchronization

In the synchronization loop:
) reinit the overflow flag;
) insert here the processing part, while the timer is counting;

) synchronization part: wait until the overflow flag occurs

On some MCU, the overflow value is hardwired to the 65536 (on 16-bits).
So you will have to update the timer value so that it performs the required
number of steps.

ECENTRALE
NANTES
M. Briday 2020/2021 140/224

We have a stepper motor to control, and a function motorStep() is
available to send a pulse to the power interface. We have to call this
function at a frequency of 500Hz, so that the motor turns in continuous
mode.

We also consider that there is another function otherStuff() that should
be called at the same frequency. The duration of this function is set
between 0.1 and 1.3ms.

> implement the setup() function to initialize the timer (we will use a
tick@1ps)

> implement the control loop (inside main()) that calls periodically
these 2 control functions.

CENTRALE
NANTES

M. Briday 2020/2021 141/224

Correction - synchronization

void setup(void) {

}

int main() {

CENTRALE
} NANTES

M. Briday 2020/2021 142/224

Correction - synchronization

void setup(void) {
RCC->APB1ENR |= RCC_APB1ENR_TIMGEN;

—_asm("nop");
//reset peripheral (mandatory!)
RCC->APB1RSTR |= RCC_APB1RSTR_TIM6RST;
RCC->APB1RSTR &= ~RCC_APB1RSTR_TIM6RST;
—_asm("nop");
TIM6->PSC = 64-1; // prescaler : tick@lus
TIM6->CR1 |= TIM_CR1_CEN; // config reg : enable
TIM6->ARR = 2000-1; // each 2ms (2000 ticks)
}
int main() {
setup();
while(1l) {
TIM6->SR &= ~TIM_SR_UIF; //reinit overflow flag
motorUStep(); //application stuff, when the
otherStuff(); //timer counts up
while(! (TIM6->SR & TIM_SR_UIF)); //synchro
}

} CENTRALE
NANTES

M. Briday 2020/2021 142/224

Q Pulse Width Modulation

ECENTRALE
NANTES
M. Briday 2020/2021 143/224

Extend timer possibilities with:
) the timer of chapter p. 7;

) a comparator: it is a mechanism that will continuously compare the
value of a register with the value of the timer;

) possibly a physical output (on a pC pin).

This system will mainly be used to generate a digital output with a Pulse
Width Modulation (PWM), in an autonomous way.

CENTRALE
NANTES

M. Briday 2020/2021 1447224

At all times, the value in the register CCRx is compared with the current

value of the timer.
When the 2 values are matching, the flag CCxIF is set.

CNT..
CCxIF=1 CCxIF=1

r Y r
ARR

CCRx fff ff ﬁfff

\
LA
resolution time

ECENTRALE
NANTES
M. Briday 2020/2021 145/224

Basic block diagram

Timer TIMy

pin TIMy_CHx
register Waveform \
CNT Generator 4

N CCxIF

register
CCRx

the PWM is used to control many types of actuators:
) DC Motor (with power mosfet)
) stepper motor
) brushless motors
) LEDs —
) [nizee

Basic block diagram

Timer TIMy

register

CNT

register

Waveform
Generator

pin TIMy_CHx

N

N CCxIF

CCRx

@

4 channels are associated to timers TIM2/3/4, but none for basic timers

TIM6/7.

M. Briday

ECENTRALE
NANTES
2020/2021 147/224

Block Diagram of TIM2/3/4

Internal clock (CK_INT)
TIMXCLK from RCC

Trigger
ETRF controller

TIMx ETR[% ETRP TRGO
- detector & prescaler rop
to DAC/ADC

Reset, enable, up, count

TIFP1
TI2FP2

CK_PSC PSC CK_CNT

prescaler ooy
XOR THEP1
™ Input fiter & [TI1FP2 P,em‘e, IC|PS S
TIMx_CH1 edge detector :
prvTp— _ce
TIMx_CH2| Ti2 D\CZ!—\lczPs " - OCZREF ompm 002 L e oo
SOy oca
- Outpull OC3 1 Jriay_cha
icontrol|

TIMx_CH3[H—————

TOCIREF
]ICB Prescaler] |C3PS Capmre/c:ompare3reguster

ccal

U ccdl

~ U5 o~
Ic4 IC4PS torl OC4REF___ [Output| OC4
D Capture/Compare 4 ool [1TIMx_CH4

Ti4

TIMx_CH4

ETRF

E CENTRALE
NANTES
2020/2021 148/22

PWM mode edge-aligned

The simplest mode is edge-aligned, where:
) the output is set after an overflow;
) the output is c/leared when the comparison matches.

CNT4

CCxIF=1 CCxIF=1 CCxIF=1
UIF=1 UIF=1

r ror ror
ARR ~

CCRx fﬁf ;Hf fﬁf

0)
- 1] -
TIMy_CHxX time

ECENTRALE
NANTES
M. Briday 2020/2021 149/224

PWM mode centered-aligned

In this mode the timer counts up and down, alternatively.
All the PWM channels are synchronized.

CNT,
CCxIF=1 CCxIF=1 CCxIF=1

4 r r

CCRx ”Jff
/| S

0 time
TIMy_CHx]

ARR

~

ECENTRALE
NANTES
M. Briday 2020/2021 150/224

As a consequence

) the PWM frequency is defined only from the timer frequency
For instance, with a 1MHz timer (prescaler=63), with ARR=99 (100
ticks):
= resolution is 1ps;

= PWM frequency is 192309 — 10KHz

) the duty cycle is defined with the comparison register CCRx:

The duty cycle is 428 = S5 (often defined in %).

Once configured, the signal on the pin TIMy_CHx evolves autonomously,
i.e. without any software.

ECENTRALE
NANTES
M. Briday 2020/2021 151/224

The configuration is done in three steps:
) pin (alternative config.). See p. 6;
) timer (= PWM frequency), see p. 7;
) output comparison (= PWM duty cycle).

ECENTRALE
NANTES
M. Briday 2020/2021 152/224

Control register CRx

CR1 Control Register 1

15 14 13 12 11

10 9 8 7 6 5 4 3 2 1 0

UIF

RE-
MAP

CKD[1:0] ARPE CMs DIR OPM URS upbis CEN

w w w w w w w w w w

OPM One Pulse Mode: counter stops at next overflow

CEN Counter enable: should be setto 1

CMS Center-aligned mode selection

00
01

10

01

M. Briday

edge-alighed mode

centered-aligned mode 1: comparison
interrupt flag only when counting down
centered-aligned mode 2: comparison
interrupt flag only when counting up
centered-aligned mode 3: comparison

interrupt flag when counting up and down Eﬁi“w‘&"s“‘

2020/2021 153/224

Capture Compare Mode Register CCMRx

CCMRx Capture Compare Mode Register x

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ocam ocim
3] 3]
w w
15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0
oc2CE| 0C2M[2:0] 0C2PE | OC2FE OC1CE | OC1M[2:0] OC1PE | OC1FE
cC2s[1:0] CC18[1:0]
IC2F[3:0] IC2PSC[1:0] IC1F[3:0] IC1PSC[1:0]
w [ow [w [ow [ow [w [ow [w [ow [w [w [ow [w [w | w [w

OCxM Output Compare Mode: PWM mode is 0110
CCxS Capture Compare Selection: output is 00

OCxPE Preload Enable: new duty value taken into account only
when there is an overflow.

ECENTRALE
NANTES
M. Briday 2020/2021 154/224

Capture Compare Enable Register CCER

CCERx Capture Compare Enable Register

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[ccane] [ccap [ccae [ceane] [ccap | cc3e [ceanr| [cczp [ccze [coine| [cctp [ccie |

Lol [wlwlow] [owf[w[w] [w[w[w] [w][w]

CCxE Capture Compare Enable
CCxP Capture Compare Polarity

ECENTRALE
NANTES
M. Briday 2020/2021 155/224

Example: PWM signal

We want to realize the following signal on the pin PB3.
— _1 .
) PWM frequency (Fpym = P)t 1KHZ
. th_y.
) duty cycle: 20% (5,-);
We fix ARR to 99, so that the duty cycle may be changed with 1%.

th

PB3T | _I_,

Pewm

ECENTRALE
NANTES
M. Briday 2020/2021 156/224

Example: PWM signal

The documentation (STM32F303 datasheet) shows:

AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 Al
Port TIM2/TIM15/ TIM1/TIM3/ SPI/ M1/ USART1/USA | GPCC
SYS_AF TIM16/TIM17/ TIM15/ TSC 12C1/TIM1 Infrared Infrared RT2/USART3/ | GPCC
EVENT TIM16 GPCOMP6 GPC(
‘ PB3 JTDg@ISACE TIM2_CH2 TSC_G5_lO1 SPI1_SCK ‘ USART2_TX

> Configure pin PB3 for the PWM;
> Configure timer to get the correct frequency;
> Configure comparison value to get a 20% ratio.

ECENTRALE
NANTES
M. Briday 2020/2021 157/224

Example: PWM signal

ty
s

PB3T_’i [] ’—L

Ppwm

void setup (void){
//1 - pin configuration:
// alternate config 1 for PB3
pinAlt(GPIOB,3,1);

/] ..

CENTRALE
NANTES

Example: PWM signal

th

PB3T_’i ﬁ ’—L

Ppwm

/7. ..

//2 - timer configuration (use TIM2@10KHz)
RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;
—_asm("nop");

//reset peripheral (mandatory!)
RCC->APB1RSTR |= RCC_APB1RSTR_TIM2RST;
RCC->APB1RSTR &= ~RCC_APB1RSTR_TIM2RST;
—_asm("nop");

//config timer@lOKHz, with 100 ticks (duty cycle at 1%)
TIM2->PSC = 64-1; //prescaler : tick@lus
TIM2->ARR = 100-1; //auto-reload: counts 100 ticks

/] ..
| CENTRALE
NANTES

Example: PWM signal

th
—

PB3T_’i T ’—‘_,

Ppwm

/...

//3- PWM configuration

TIM2->CCMR1 &= ~TIM_CCMR1_CC2S_Msk; //channel 2 as output
TIM2->CCMR1 &= ~TIM_CCMR1_0C2M_Msk;

TIM2->CCMR1 |= 6 << TIM_CCMR1_0C2M_Pos; //output PWM mode 1
TIM2->CCMR1 |= TIM_CCMR1_0C2PE; //pre-load register TIM2_CCR2

TIM2->CR1l &= ~TIM_CR1_CMS_Msk; //mode 1 // edge aligned mode

TIM2->CCER |= TIM_CCER_CC2E; //enable
TIM2->CR1 |= TIM_CR1_CEN; //config reg : enable
TIM2->CCR2 = 20-1; //20%

E CENTRALE
NANTES
M. Briday 2020/2021 160/224

Example: PWM signal

th

PB3T_’i [’—L

Ppwm

int main()
setup()
while(1){
//nothing to do
//signal generation is
//autonomous
}
}

E CENTRALE
NANTES
M. Briday 2020/2021 161/224

Q Interrupts

ECENTRALE
NANTES
M. Briday 2020/2021 162/224

Interest for interrupts

Ex: rotation of a stepper motor, with a precise frequency of 500Hz:

call to stepperStep()ﬂ

void setup(void)

{
//input clock = 64MHz.
RCC->APB1ENR |= RCC_APB1ENR_TIMG6EN;
__asm("nop");
//reset peripheral (mandatory!)
RCC->APB1RSTR |= RCC_APBIRSTR_TIM6RST;
RCC->APB1RSTR &= ~RCC_APBIRSTR_TIM6RST;
——asm("nop");

TIM6->PSC = 6400-1; //tick@l00us
TIM6->ARR = 20-1; //counts 20 ticks
TIM6->CR1 |= TIM_CR1_CEN;

//setup stepper motor

stepperSetup();

int main() {

setup();

while(1)

{
//reset flag
TIM6->SR &= ~TIM_SR_UIF;
//1 step
stepperStep();
//wait. ..
while(!(TIM6->SR & TIM_SR_UIF));

E CENTRALE
NANTES
0/2021 163/224

Interest for interrupts

Time sequence of the application (after initialization):

timer TIM6

bit UIF of TIM6->SR T ” ” ”

i~
program activityl

call to stepperStep()T ” ” ”

ECENTRALE
NANTES
M. Briday 2020/2021 164/224

Interest for interrupts
The program spends its time running in a waiting loop!

) 1t would be more appropriate to unload the microcontroller from this
test, but to make the device notify to the microcontroller, by a logical
signal, when the transition is detected

) At this point, the microcontroller would have to interrupt what it is
doing to process transition detection.

This means that:

) the time sequence of the program is now event triggered from the
external environment;

) We exploit waiting times so that the microcontroller works on other
tasks.
[N e

Interest for interrupts

2 questions:

) what is the hardware structure that allows the microcontroller to
process external requests?

) What is the software structure associated?

An external signal requiring the microcontroller’s attention is called:
) aninterrupt or
) aninterrupt request or

) an external request or ...

| CENTRALE
NANTES
M. Brida 2020/2021 166/224
y

) the device is initialized;
it runs in parallel with the core (which execute instructions);
it has a defined objective:
detect an edge on a pin (falling/rising)
make an analog to digital conversion ;
wait for a defined duration (chap. p.7);
send or receive a message on a bus i2c, spi, uart, usb, ...
) When the objective is reached:
the device sends an interrupt to the microcontroller;
the microcontroller suspends its execution;
it executes the associated Interrupt Handler;
At the end of the interrupt handlers, it resumes its normal behavior.

ECENTRALE
NANTES
M. Briday 2020/2021 167/224

Interrupt sources

The STM32F303 defines 43 different interrupt sources, including
) 8 for the timers (TIMx);
) 7 for external interrupts (EXTI);
) 1 for the analog to digital converters (ADC);

) 10 for serial communication (3 uart, 1 spi, 2 i2c ,4 can);

)

CENTRALE
NANTES

Routing of an interrupt request

Interrupt management is done by a dedicated device, the NVIC: Nested
Vector Interrupt Controller.

Enabling an interrupt is done at 3 levels:
) at the device level: this is the local activation;
) at the NVIC level: for the concurrent routing of interrupts

) at the core level: this is the global activation. If interrupts are
disabled at the core level, there is no more interrupt at all.

ECENTRALE
NANTES
M. Briday 2020/2021 169/224

Routing of an interrupt request

1 local validation (register [D]1IER)
2 NVIC validation

3 interrupt priority (see p. 174);

4 global validation;

Périphérique NVIC Coeur Cortex
(ST) (ARM) (ARM)

local interrupt SR ——

&
local validation L

— interrupt global
[D]IER & validation
: : &

NVIC validation interrupt re-
quest to the
core

&
priority level
of the interrupt — A
request
A<B

priority level of

B
the core —) [N e

M. Briday 2020/2021 170/224

Routing of an interrupt request: local validation

The device should be configured. the validation is done through device
register [D]IER (Interrupt Enable Register)

The register has the same structure as the status register (SR). When the
device has done its work, a flag is set in the register SR.

Périphérique NVIC Coeur Cortex
(ARM) (ARM)

local interrupt SR

local validation I_) interrupt global

[D]IER validation

NVIC validation interrupt re-
quest to the
core

priority level
of the interrupt — A
request

priority level of
the core

—B

CENTRALE
NANTES

M. Briday 2020/2021 171/224

Routing of an interrupt request: NVIC

Device validation NVIC is common to all ARM CortexM processors.
2 functions are provided by ARM (IRQ = Interrupt ReQquest):

void NVIC_EnableIRQ(int src); //validation
void NVIC_DisableIRQ(int src); //invalidation

Périphérique NVIC Ceeur Cortex
(ARM) (ARM)

local interrupt SR

local validation I_) interrupt global

[DITER validation

NVIC validation interrupt re-
quest to the
core

priority level
of the interrupt ~ —3 A
request

priority level of
the core ?

ECENTRALE
NANTES
M. Briday 2020/2021 172/224

Routing of an interrupt request: NVIC

The argument (src) is the interrupt source id. ST defines symbolic name
in the register definition file (stm32f303x8.h), with the name of the
source, followed by _IRQn:
) TIM2 = TIM2_IRQn...
) but TIM6 for instance shares its interrupt source with the first DAC: =
TIM6_DAC1_IRQn

NVIC_EnableIRQ(TIM3_IRQn); //ex timer TIM3

Périphérique NVIC Coeur Cortex
(ARM) (ARM)

local interrupt SR
local validation I_} interrupt global
[DIIER validation
NVIC validation interrupt re-
quest to the
core
priority level

of the interrupt ~ —3 A
request

priority level of CENTRALE
the core —°® E NANTES

M. Briday 2020/2021 173/224

Routing of an interrupt request: priorities

The priority is introduced to manage nested interrupt).
When the core executes the code associated to an interrupt, it inherits the
priority of the interrupt:

) if another interrupt with a higher priority occurs, the execution of the
current interrupt is preempted (and the current core priority
increases);

) if another interrupt with a lower priority occurs, the execution of the
new interrupt is delayed until the end of the execution of the current
interrupt handler.

Périphérique NVIC Ceeur Cortex
(sm) (ARM) (ARM)

local interrupt SR
local validation I_} interrupt global
[D]IER validation

NVIC validation

interrupt re-
quest to the
core

priority level
of the interrupt A
[N e
A<B
Al o

priority level of
M. Briday 2020/2021 1747224

Routing of an interrupt request: priorities

The priority is introduced to manage nested interrupt).
This Cortex-M4 core supports up to 16 priority levels!: de 0 to 15.

The higher priority is the lowest value!
0 is the highest priority. . .

Périphérique NVIC Ceeur Cortex
(ARM) (ARM)

local interrupt SR

local validation L interrupt global

[D]IER validation

NVIC validation interrupt re-

quest to the
core

priority level

of the interrupt —p A
request
A<B

priority level of 3
the core B

[N e
LARM allows up to 256 levels for the Cortex-M4

M. Briday 2020/2021 175/224

Routing of an interrupt request: priorities

As for the NVIC validation, ARM gives a function:
void NVIC_SetPriority(int src, int priority);

src the interrupt source;

priority the priority (higher the priority, lower the value)

Périphérique NVIC Coeur Cortex
(ARM) (ARM)

local interrupt SR

local validation I_) interrupt global

[DJIER validation

NVIC validation interrupt re-

quest to the
core

priority level

of the interrupt — A
request
A<B

priority level of
the core 28

ECENTRALE
NANTES
M. Briday 2020/2021 176/224

Routing of an interrupt request: global validation

Global disabling of interrupts quickly blocks interrupts from all devices.
By default, at startup, there is no global interruption blocking.

void __disable_irq (void); //no interrupt

void __enable_irq (void);

Périphérique NVIC Coeur Cortex
(sT) (ARM) (ARM)

local interrupt SR —)

& —I E
local validation a interrupt global
[DIIER

validation
NVIC validation }

priority level

of the interrupt % A
request
A<B

priority level of ;
the core E

interrupt re-
quest to the
core

ECENTRALE
NANTES
M. Briday 2020/2021 177/224

Interrupt request

Once the interrupt request is validated, the processor:
) suspends the ongoing execution of the program;
) save the current context of the processor (registers);
) execute the interrupt request;
) restores the previous context;
) resumes the execution of the program where it was interrupted.

There is a different interrupt routine for each interrupt source, whose
name is formed by the device name, followed by _IRQHandler... but
some interrupt routines may be shared by different devices:

void TIM6_DAC1_IRQHandler();

CENTRALE
NANTES

M. Briday 2020/2021 178/224

Interrupt request

As a result, for the synchronization:
) if the device is correctly configured (TIM2 for instance)
) if there is no other interrupt with a higher priority under execution;
) if interrupts are validated at the core level (global)

Then:

) The processor suspends its execution and runs the interrupt request
TIM2_IRQHandler.

) The systems behaves like if the hardware was calling the function
TIM2_IRQHandler().

The interruption routine can’t have an argument (in or out)!
Communication between the interrupt routine and the rest of the program
can only be done by global variables!

e

M. Briday 2020/2021 179/224

Full Example

get back to the example with the stepper motor (p. 163)

call to stepperStep()ﬂ

void setup(void)

{
//input clock = 64MHz.
RCC->APB1ENR |= RCC_APB1ENR_TIMG6EN;
—_asm("nop");
//reset peripheral (mandatory!)
RCC->APB1RSTR |= RCC_APBIRSTR_TIM6RST;
RCC->APB1RSTR &= ~RCC_APBIRSTR_TIM6RST;
—asm("nop");

TIM6->PSC = 6400-1; //tick@l00us
TIM6->ARR = 20-1; //counts 20 ticks
TIM6->CR1l |= TIM_CR1_CEN;

//setup stepper motor

stepperSetup();

//enable interrupt

TIM6->DIER |= TIM_DIER_UIE;

NVIC_EnableIRQ(TIM6_DAC1_IRQn);
}

M. Briday

void TIM6_DAC1_IRQHandler()
{
//1 step
stepperStep();
//acknowledge
TIM6->SR &= ~TIM_SR_UIF;
}

int main() {
setup();
while(1)
//nothing!

}
}

E CENTRALE
NANTES
20/2021 180/224

Full Example

To be noted:

) the initialization of the device is identical, only the local validation is
added (DIER);

) the configuration of the NVIC is limited to a function call: no priority
here, because there is only one interruption!

) the structure of the interrupt routine is similar to the polling approach
as before but:
the routine is called only where there is effectively an overflow
the while loop is removed. If the code is executed, this is because
there was an overflow.
the interrupt should be acknowledged. In the other case, the routine is
called again and again!

) there is many cpu time to compute something else (in the main).

ECENTRALE
NANTES
M. Briday 2020/2021 181/224

Full Example

Time sequence of the application (after initialization):

TIM6->CNT

bit UIF of TIM6->SR I

,,, N

ISR activityI
,,, N

call to stepperStep()I
,,, N

idle timeI
,,, N

ECENTRALE
NANTES
M. Briday 2020/2021 182/224

Full Example

Time sequence of the application (after initialization):

TIM6->CNT

bit UIF of TIM6->SR T ” ” ”

ISR activityT |_| |_| |—|

call to stepperStep()T ” ” ”

A

idletime| 1 U I ,

ECENTRALE
NANTES
M. Briday 2020/2021 182/224

Exercice: Signal generation

We want to program a chaser under interrupt, with the leds (associated to
pins PAO to PA7. The refresh rate is set at 10Hz. The track will go to the
left, then to the right, etc....

> give the I/O inits;
> give the timer init (TIM6);
> enable the interrupt and give the ISR code

The idle task (code executed in the main() loop), we toggle the output on
PBO, at the max frequency of the processor.

CENTRALE
NANTES

Exercice: Signal generation

void setup() {
//leds chaser

//1/0 signal

//TIM6

E CENTRALE
NANTES
M. Briday 2020/2021 184/224

Exercice: signal generation

void setup() {
//leds chaser
for(int led=0; led<8;led++)
pinMode (GPIOA, led, OUTPUT);

//1/0 signal
pinMode (GPIOB,0, OUTPUT);

//TIM6 - input clock = 64MHz.
RCC->APB1ENR |= RCC_APB1ENR_TIMGEN;
—_asm("nop");

//reset peripheral (mandatory!)
RCC->APB1RSTR |= RCC_APB1RSTR_TIM6RST;
RCC->APB1RSTR &= ~RCC_APB1RSTR_TIM6RST;
—_asm("nop");

TIM6->PSC = 64000-1; //tick@lms

TIM6->ARR = 10-1; //counts 10 ticks
TIM6->CR1 |= TIM_CR1_CEN;

E CENTRALE
NANTES
M. Briday 2020/2021 184/224

Exercice: signal generation

> enable interrupt on TIM6:

local validation (device)
NVIC validation

void configIT()
{

//local validation

//NVIC validation

CENTRALE
NANTES

Exercice: signal generation

> enable interrupt on TIM6:

local validation (device)
NVIC validation

void configIT()

{
//local validation
TIM6->DIER |= TIM_DIER UIE;
//NVIC validation
NVIC_EnableIRQ(TIM6_DAC1_IRQn);

ECENTRALE
NANTES
M. Briday 2020/2021 185/224

Exercice: signal generation

The sequence to reproduce is:

Led;
Leds
Leds
Led,
Leds
Led,
Led,

Led,

time

> give the content of the ISR

acknowledge the interrupt;
get the value in the structure; Eczmms
NANTES

Exercice: signal generation

typedef struct {

int size;
int val[];
} seqType;
const seqType seq = {
.size =
.val = {
+
void TIM6_DAC1_IRQHandler()
{
static int index = 0;
//acknowledge

//*x* application =x

CENTRALE
NANTES

M. Briday 2020/2021 187/224

Exercice: signal generation

typedef struct {
int size;
int val[];

} seqType;

const seqType seq = {
.size = 14,

.val = {1,2,4,8,16,32,64,128,64,32,16,8,4,2}

+

void TIM6_DAC1_IRQHandler()

{
static int index = 0;
//acknowledge
TIM6—SR &= ~TIM_SR_UIF;
//** application *x
GPIOA—=0ODR &= ~0OxFF; //clear
GPIOA—ODR |= seq.val[index];
//1index
index++;
if (index >= seq.size) index = 0;

}

Another solution using GPI0OA->BSRR?

M. Briday

ECENTRALE
NANTES
2020/2021 187/224

Exercice: signal generation

main part:

> give the main() function that assembles the whole:

int main()

{

while(1)
{

CENTRALE
NANTES

Exercice: signal generation

main part:

> give the main() function that assembles the whole:

int main()
{
setup();
configIT();
while(1)
{
//nothing about chaser...
pinToggle(PORTB,0);
}
}

CENTRALE
NANTES

Exercice: signal generation

Chronogram

TIM6 ISR I

bit UIF of

TIM6->SR

The processor only does one thing at a time. It is either in the main
program (in the background task) or in the interrupt function. It is its high

speed of execution that gives us the illusion of parallelism of executiot.

M. Briday

CENTRALE
NANTES

2020/2021 189/224

Exercice: signal generation

Chronogram
0 [T | | |)
P 0 T e
TI¥6 ISR | Il Il
) R R R
PAo-7 ! [e e

The processor only does one thing at a time. It is either in the main
program (in the background task) or in the interrupt function. It is its high
speed of execution that gives us the illusion of parallelism of executioE.

CENTRALE
NANTES

Functional architecture

An algorithm is used to describe sequential behaviour.

Objective

The purpose of the functional structure is to provide a graphical
description to show the links between the different entities supposed to
run in parallel, each performing a function in the system.

The functional structure does not replace the algorithm, it completes it by
providing another level of description.

CENTRALE
NANTES

functional architecture

The processes supposed to run in parallel;

) the hardware actions performed by peripherals;

) the (temporary) software actions performed by interrupts;

) the permanent software action (the background task);

M. Briday

Handler

ECENTRALE
NANTES
2020/2021 191/224

Functional architecture

Links between entities may be:
) Data Flow

—>

The arrow shows the direction of the data flow

) Control Flow

The arrow shows the direction of the control flow

ECENTRALE
NANTES
M. Briday 2020/2021 192/224

Functional architecture

A global variable should be defined, as it can be shared by different

parallel tasks:
4)]var

The arrow shows the direction of the data flow.
Here, the global variable var is written.

ECENTRALE
NANTES
M. Briday 2020/2021 193/224

Functional architecture of the previous example

Continuous
hardware
process

TIM6

UIF

M. Briday

Temporary
software
process

TIM6 (DAC1)
IRQHandler

process

Continuous
software
process

Background
task

PAO..7

PBO

Continuous
hardware
process

Chaser

Continuous
hardware
process

Led

ECENTRALE
NANTES
2020/2021 194/224

Functional architecture

) the continuous hardware process (physical process) runs in parallel
with the processor:

timer and other peripherals;
external peripheral, such as a LCD;
sensors/actuators (external environment).

) Continuous software process: The background task that runs all the

time, except when it is interrupted. The algorithm of this action is the
part of the program that is after the setup phase.

Continuous Temporary Continuous
hardware software hardware
process process process

- Tive acy) |7
TiMe IRQHandler Chaser

process.

Continuous Continuous
software hardware
process. process

PBO
Led

Back d
ackaroun CENTRALE
task NANTES

Functional architecture

) Temporary software process: The process, a procedure activated by
the hardware, which wakes up as the result of hardware signal, and
interrupts the background task, then s/leeps again after doing its job.

Continuous Temporary Continuous
hardware software hardware
process process process
UIF TIM6 (DACL) PAO..7
TIM6 P\,—)} IRQHandler Chaser
process
Continuous Continuous
software hardware
process process
PBO

Led
Background
task

M. Briday

ECENTRALE
NANTES
2020/2021 196/224

@ External Interrupt Handling

ECENTRALE
NANTES
M. Briday 2020/2021 197/224

) extending the interrupt machanism to detect a rising/falling edge on
a pin

) Example : PIR sensor (Pyroelectric (or Passive) InfraRed):
TYPICAL CONFIGURATION

FRESNEL LENS
*y
IRFILTER | AMPLIFIER COMPARATOR
1
z
|
b
s 3

THERMAL ENERGY QUTPUT

[

PIR
+

The output of the sensor is a pulse, that detect an infrared variation
in the field of the sensor.

) We have to dissociate:

input level (low / high);
input edge (rising/faling);

CENTRALE
NANTES

The EXTernal Interrupt peripheral

On the STM32, the peripheral is called EXTI: EXTernal Interrupt.
The principle is very basic:

2

\ 4

N

pin

M. Briday

pC

—> EXTIx=1

RTSR/FTSR

ECENTRALE
NANTES
2020/2021 199/224

The ernal /nterrupt peripheral

The GPIOs are connected to 16 external interrupt lines:

EXTIO[3:0] bits in the SYSCFG_EXTICR1 register

PAO O———
PBO O——
PCO O——Pp] EXTIO

The restriction is that if we have an external interrupt on pin PA3, no other
external interrupt can be associated to Px3, with x € [A,B,...,G]|

ECENTRALE
NANTES
M. Briday 2020/2021 200/224

setting an external Interrupt

The following operations should be done:
) the GPIO should be configured:

clock for the GPIO port;
input port mode, with possibly pull-up (push button, encoder, ...)

) clock for the SYSCFG peripheral
RCC->APB2ENR |= RCC_APB2ENR_SYSCFGEN;

—asm("nop");

) enable at least one external line (IMR register)

) select the port associated to that interrupt (SYSCFG->EXTICR)
) configure the edge detection (RTSR/FTSR registers)

) enable the NVIC interrupt

ECENTRALE
NANTES
M. Briday 2020/2021 201/224

Interrupt Mask Register

The interrupt mask register allows to enable an interrupt. For external
interrupts, only the bit 0 to 15 are significant:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
MR31 | MR30 | MR29 | MR28 | MR27 | MR26 | MR25 | MR24 | MR23 | MR22 | MR21 | MR20 | MR19 | MR18 | MR17 | MR16
w w w w w w w w w w w w w w w w
15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0

MR15 | MR14 | MR13 | MR12 | MR11 | MR10 | MR9 MR8 MR7 MRé MRS MR4 MR3 MR2 MR1 MRO

//interrupt for Px1l (x not yet defined)
EXTI->IMR |= EXTI_IMR_MR1l; //Mask register 1

ECENTRALE
NANTES
M. Briday 2020/2021 202/224

EXTI Configuration register

The EXTI Configuration register is defined is SYSCFG peripheral!! it defines
the port chosen for external interrupt:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
EXTI3[3:0] EXTI2[3:0] EXTI[3:0] EXTIO[3:0]

4 registers are provided, for the 4x4=16 interrupts.

//select port B for extil
SYSCFG->EXTICR[O] |= SYSCFG_EXTICR1 _EXTI1 PB;

CENTRALE
NANTES

Rising Trigger Selection register

The RTSR register defines if a rising edge may be detected. The FTSR
(Falling Trigger Selection Register) behaves the same way

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
TR31 | TR30 | TR29| TR22 | TR21 | TR20 | TR19 | TR18 | TR17 | TR16
w w w w w w w w w w
15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0
TR15 | TR14 | TR13 | TR12 | TR11 | TR10 TR9 TR8 TR7 TR6 TR5 TR4 TR3 TR2 TR1 TRO
w w w w w w w w w w w w w w w w

//falling on extil
EXTI->FTSR |= EXTI_FTSR_TR1;

ECENTRALE
NANTES
M. Briday 2020/2021 204/224

Full example

Let’s configure a push button (pull-up) connected to PB1, that toggles a
led on PBO, under interrupt (1/2).

void setup()

{
//config PBO as output (Led)
pinMode(GPIOB, 0 ,OUTPUT) ;

//config PB1 as input pull-up (push button)
pinMode(GPIOB, 1, INPUT_PULLUP);

//config external interrupt on PB1

//PBx associated to EXTIx => EXTI1 here

RCC—>APB2ENR |= RCC_APB2ENR_SYSCFGEN;

_asm("nop");

EXTI—=IMR |= EXTI_IMR_MR1; //Mask register 1

EXTI->FTSR |= EXTI_FTSR_TR1; //falling on extil
SYSCFG—=EXTICR[0] |= SYSCFG_EXTICR1_EXTI1_PB; //port B for extil
NVIC_SetPriority (EXTI1_IRQn, 3); //NVIC config
NVIC_EnablelRQ(EXTI1_IRQnN);

ECENTRALE
NANTES
M. Briday 2020/2021 205/224

Full example

Let’s configure a push button (pull-up) connected to PB1, that toggles a
led on PBO, under interrupt (2/2).

void EXTI1_IRQHandler()
{

GPIOB—=ODR "= 1 ; //toggle led

EXTI—=PR |= EXTI_PR_PR1l; //it acknowledge
}

/* main function x/
int main(void)
{
setup ();
/* Infinite loop */
while (1);
}

CENTRALE
NANTES

Q Serial Comm. (UART/I2C/SPI)

ECENTRALE
NANTES
M. Briday 2020/2021 207/224

Introduction

Main methods to communicate between 2 devices:

)) a parallel communication, in which each pin

transmits one bit.

e

——— bit;
——— bitg
——— bits
——— bit,
—— bit;
———s bit,
F——— bity

—— bito

Parallel communication

)) a serial communication, where each bit is
transmitted one after the other.

Rx

uc

Serial communication

There are many serial communication protocols:

USB, UART, SPI, 12C, CAN, ...

M. Briday

ECENTRALE
NANTES
2020/2021 208/224

Example: a drone

Global electronic architecture of a

drone.

)

)
)

)
)
)
)

4 brushless motors, with an ESC
(Electronic Speed Control).

power supply

motherboard with embedded
sensors

GNSS sensor
RF Receiver

telemetry

camera gimbal control

Image from http://ardupilot.org

M. Briday

CENTRALE
NANTES

2020/2021 209/224

http://ardupilot.org

Example: a drone

Processor / device communication

=7

Electronic Speed Control (ESC)

PWM
Magnetometer i2c / spi .
(ST LIS3MD) i2c / uart GNSS
(_f_ (ublox SAM-M8Q)
i2c/ Spi MCU
Inertial measurement unit _/-) A(I;]Sg:e’\;ldssse&_’r;c))r
(Gyroscope/Accelerometer)
(Invensense MPU6500)
PWM
Py or “
RF Receiver PPM

ECENTRALE
NANTES
M. Briday 2020/2021 210/224

Universal Asynchronous Receiver Transmitter (UART)

)

)

)
)
)
)
)

On a serial line, bits are transmitted one after the other (time
multiplexing);

Transmission is point-to-point, full-duplex, with one RX line and one
TX line.

Speed is expressed in bit per second (b/s) or baud,

When idle, the line is at high level;

The transmission starts with a start bit;

This start bit is used by the receiver to synchronize itself;

The first bit of the transmitted byte is the LSB.

LSB MSB
TX line \ A bity X bit, X bit, X bits X bits X bits X bitg X bit; X y
,,,,,,,,,,,,,,,,,, N
start bit parity) idle
stop bit
frame S

M. Briday 2020/2021 211/224

UART : flow control

Flow control ensures that a signal is transmitted correctly.
The parity check is a simple way to detect a transmission error on a bit
(an inversion). However, it does not allow this error to be corrected.
) the sender and receiver count the number of high bits (1) in the sent
frame.

) With an even parity configuration, we will make sure that the number
of bits of the frame is even. Thus, the parity bit will be set to:

0 if the number of bits in the frame is already even;
1 if the number of bits in the frame is odd, to make this number even.

) With an odd parity, we make sure that the number of bits transmitted
is odd (same approach).

) This flow control allows to detect a transmission error on a bit (an
inversion), but not to know which bit is wrong.

CENTRALE
NANTES

M. Briday 2020/2021 212/224

UART : characteristics

) the size of the data: generally 8 bits, but 7 bits (ASCII) can be used;

) the control of the transmission: a bit of parity even or odd, or no
parity (even, odd or none)

) speed of transmission (in bit/s): generally up to 115200 bits/s.

) number of stop bits, generally programmable on 1, 1.5 or 2 bits.
We often use a configuration 115200 8N1:

) 115200 bauds;

) 8 bits of data;

) no parity (N);

) 1 stop bit.

ECENTRALE
NANTES
M. Briday 2020/2021 213/224

12C : Introduction

) The 12C bus (Inter Intergrated Circuit) is a local bus invented by
Philips (now NXP).

) It allows the connection between the components of the same
system (pC, RAM, real-time clock, EEPROM, LCD driver, remote 1/0,...)

) it’s a master/slave bus, where the master initiates communication to
1 or more slaves;

) the bus is synchronous bi-directional half-duplex:

a line is reserved for the clock that is common for each device
(synchronous);

bi-directional (master — slave or master < slave);

the communication is performed in only one direction at a time
(half-duplex), because there is only one data line;

CENTRALE
NANTES

M. Briday 2020/2021 214/224

12C : Introduction

) In the general case, there is only one master (pC), and several slaves.
) Each slave has an address (on 7 bits) = maximum of 128 slaves;

) the transmission speeds are relatively low:
< 100 kbits/s mode standard,
< 400 kbits/s mode fast;
< 1 Mbits/s mode fast+;
< 3.4 Mbits/s mode high speed,
< 5 Mbits/s mode ultra fast (unidirectional only);

ECENTRALE
NANTES
M. Briday 2020/2021 215/224

12C: Hardware structure

) The communication uses 2 lines at high level when idle:
SDA: Serial DAta line;
SCL: Serial CLock line;

) the outputs are open drain with only one pull-up resistor;
) each circuit monitors the level on the bus lines;
NOTE: A pull-up resistor is required on both lines! (~ 2KS2 for a std mode)

scL .

‘ Master ‘ ‘ slave 1 ‘ ‘ slave 2 ‘ ‘ slave n ‘

) wired AND: allows synchronization (several masters on the bus, and
therefore several SCL), as well as arbitration (simultaneous data
transmission on SDA). Eﬁi’ﬂ&“‘

M. Briday 2020/2021 216/224

12C: bus transaction

) the master always initiates the communication: it’s the only device
that manages the clock SCL

J— 1I — — - _Ii
SDA N\ - - B !
I 1
T NIV N A e o A NS = N A A
| : L Y D | S | G :
ls\l ADDR\ESS RIV{ fK 7A j DA{A ACK:NiCK '/PI
S | ADDRESS ‘RIW‘ A ‘ DATA ‘ A DATA ‘AIA P
o [} [}

S Start of Frame
ADDRESS slave address (7 bits). MSB first.
R/W Read/write mode
A Acknowledge from the slave (ACK slot)
DATA 8 bits data (direction depends on previous bit R/W)
P End of Frame (stoP) EW&ALE

12C: bus transaction

Exemple of a transaction, using a logic analyser:
) line DO is SDA
) line D1 is SCL

[

[
- L PP PP L L PP L L L L
vecmena © Aaires w08 TS o I — — = S Y

ECENTRALE
NANTES
M. Briday 2020/2021 218/224

SPI: Introduction

) The SPI (Serial Peripheral Interface) was introduced by Motorola
(become Freescale, bought by NXP in 2015) in the 80'’s.

) like the 12C, it's a master/slave bus, where the master initiates
communication to 1 or more slaves;
) the bus is synchronous bi-directional full-duplex:

a line is reserved for the clock that is common for each device
(synchronous);

bi-directional (master — slave or master < slave);

the communication may be done in two directions at the same time
(full-duplex), because there is one data line for each direction;

CENTRALE
NANTES

M. Briday 2020/2021 219/224

SPI : Introduction

) In the general case, there is only one master (pC), and several slaves.

) each slave is selected using a specific I/O (Chip Select). This means
one physical pin should be reserved for each slave.

) the SPI allows faster transmissions than 12C (> 10MHz) because of
the push/pull approach (vs open drain in 12C);

) the SPl is a de facto standard. There are many adaptations.

ECENTRALE
NANTES
M. Briday 2020/2021 220/224

SPI: Hardware structure

) The communication uses 3 lines, and 1 Chip Select for each slave:
MISO: Data line Master In, Slave Out (or SO);
MOSI: Data line Master Out, Slave In (or Sl);

SCK: Serial ClocK;
CS;: Chip Select for slave i (low when the slave is selected)

Mosi
MISO -

SCK

Master slave 1 slave 2 slave n

CS2
CSn

ECENTRALE
NANTES
M. Briday 2020/2021 221/224

SPI : Communication modes

) CPOL is the clock polarity. it gives the idle state.

) CPHA is the clock phase.

CPOL=0 __ M\
SCK cCpol=1—/\ "N nnr—

SS \ [~

Mode | CPOL | CPHA
0 0 0
1 0 1
2 1 0
3 1 1

Cycle # X2 X3 Y456 X7YX8X
CPHA=0 MISO Az a5 (e X7 8z
MOSI ZX i X2 (3 Y4 Y56 X7 X8z

Cycle # T 2 X3 aYXs5) e)7X8X

CPHA=1 MISO @3 a5 e 78
MOSI XX 12 X3 faYs5 X6 7 X8)=z

image: Wikipedia

M. Briday

Modes 0 and 3 works in the same
way, except in idle state (idem for
modes 1 and 2).

ECENTRALE
NANTES
2020/2021 222/224

SPI: bus transaction

Exemple of a transaction, using a logic analyser (mode 0):
) line DO is CS
) line D1 is SCK
) line D2 is MISO
) line D3 is MOSI

_ AP A AL AL L L L L LU LU

00 4
e _—
ED> spi: Miso data 4 FF. FF 73
» SPI; MISO bits S G S W G W G W G W G D O D S S G W G W G W G W, G D Y O W G N O G G W O W)

» SPI: MOSI bits.

» SPI: MOS! data r a1 X 13) [0
CoX T} o X To X o X0 X o (T (o X }To (T Yo }To X1)) (o X0 XTo XTo XTo X0 X0 XTo)

ECENTRALE
NANTES
M. Briday 2020/2021 223/224

SPI: Hardware block in STM32

Address and data bus

)

< 1/ \FRead
Rx

FIFO
_ CRC controller
MOSI i /N |
MISOI _H"_ »| Shift register |—|<
1 7N RXONLY Iy
CRCEN
cPOL
CPHA GRCNEXT
Tx DS[0:3]
FIFO
_/ \[Write Communication
BIDIOE controller
Baud rate " BR[2:0]| 7y 'y
seKy | generator | Internal NSS
v
NS
" logic [e

NSS T:

M. Briday

2020/2021 224/224

	Introduction
	A Micro-controller
	Micro-controller Examples

	How to deal only with 0 and 1?
	0 and 1…
	Integers coding
	Unsigned integers
	Signed integer coding
	Integers in C/C++
	Endianness
	Real numbers

	How to code Characters…
	ASCII
	Norme iso8859-1
	Unicode

	Specific C language operations
	C basics
	C Operations for embedded systems

	General Purpose I/O
	intro
	Digital electronic reminder
	Pin configuration registers
	Reset configuration
	output configuration
	Principle
	Registers…
	Exercice

	Input configuration
	Principe

	Clock Sources
	Pin muxing
	Timer
	Basic principle
	Technological approach
	Registers
	synchronization

	Pulse Width Modulation
	Interrupts
	Interest
	Principle
	Example
	Exercice
	Functional architecture

	External Interrupt Handling
	Serial Comm. (UART/I2C/SPI)

