Virtual Lab

M. Briday

November 18, 2020

1 Hardware/Virtual Platform

1.1 Hardware interactions

The real environment when programming the Coro lab board is in Fig]l]

Qt Creator
= IDE
a
g
g
£ GDB
3
19}
st-util
USB
st-link
% chip
qs:; Ey
§ SWD
% 4
= STM32
MCU

Figure 1: Connection between tools and hardware

e the st-link chip and the STM32 MCU are located on the nucleo32 board
e When starting a debug session, the st-util tool is launched by QtCreator

The GDB connection is done through a socket on port 4242.

1.2 Virtual Hardware interactions

The virtual lab is based on the QEMU tool, on which the backend has been modified to:
e model STM32F303 specifi hardware (gpio, timers...)
e add a communication layer to display the state of the virtual hardware

The tools are organized as in Fig[2]

HW User
Qt Creator interface
IDE (python
based)
GDB
POSIX
QEMU Message
STM32 queue
emulator

Figure 2: Connection between tools and hardware

The big picture is simpler... but the tools are not connected automatically. You can
notice:

e QQt Creator is connected ezactly as with the real hardware, and it will behave in
exactly the same way.

e (Qemu and the Graphical user interface communicate throuth POSIX message
queue. This means:

— it will require a POSIX compliant OS (Linux, Mac OS).

— if one of the processes is not started, the other will freeze as soon as the
message queue is full. When a process is freezed, you can just restart the
other process to consume messages.

2 How to Start

A basic project have:
e A CMake project file: CMakeLists.txt

e 3 basic C file: main.c

2.1 Design with Qt Creator

With Qt Creator, open the project: File — Open file or project and choose the
CMakeLists.txt file.

The first time, it will ask for the appropriate kit (Desktop, STM32,...): configure the
project for the STM32 target. You should be able to edit your source file (and have a
project on the left side), as in Figl3]

main.c @ lab1 [master] - Qt Creator

File Edit View Build Debug Analyze Tools window Help

Projects g« main() -> int
- @ lab1 [master] #include "stm32f3xx.h"
A CMakelLists.txt . .

‘ #include "pinAccess.h"

2| Unix (LF) % Line: 14, Col: 17

- 2~ lab1
~ 1] Source Files

- void wait() {
volatile int i = 0;
for (i = 05 1 < 200; i++);

» @ <Other Locations>
» & CMake Modules ‘

}

~ void setup() {
| pinMode (GPIOB,3,0UTPUT);
}

/* main function *x/
14|~ int main(void) {I
setup();
/* Infinite loop */
while (1) {
digitalToggle(GPIOB,3);
wait();

OpenDocuments ¢ Br =
main.c

| sl 2. Type to locate (Ctrl...

1 Issues 2 SearchRe... 3 Applicatio... 4 Compile... 5 QMLDeb... 6 General... 8 TestResults * —COMMAND- = [

Figure 3: Qt Creator - main project

2.2 Run on Qemu

When the project is built (Build — Build project "labl" or Ctrl+B), then a new
directory is created: ../build-blink-STM32-Debug (where blink is the project name,

STM32 the kit name and Debug the build mode).

you will have to start a terminal (from the project explorer, right click inside the directory
and choose open in terminal).

From the terminal, you can start gemu in debugger mode (to be used with Qt Creator)

make gemu-gdb

[87%] Built target labl

Scanning dependencies of target gemu-gdb
[100%] Generating labl.bin

koo k

Now, gemu is started and waiting for a GDB connexion.

We have to start the user interface that gives information about the environment (but-
tons, leds, ...). This is a python script that can be run as a program. You have to use
another terminal (you can press Ctrl+Shift+T to get another tab:

-> % ../qemu_io.py
A graphical interface should appear, as in Figl]

QEmu GPIO interface for STM32F303 - 0o X

GPIOA

PAO PA1 PA2 PA3 PA4 PAS PAG PAT PAS PA9 PA10 PA11 PA12 PA13 PA14 PA15
GPIOB

PBO PB1 PB2 PB3 PB4 PB5 PB6 PB7 PB8 PB9 PB10 PB11 PB12 PB13 PB14 PB15
GPIOC

PCO PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15
GPIOD

PDO PD1 PD2 PD3 PD4 PD5 PD6 PD7 PD8 PDS PD10 PD11 PD12 PD13 PD14 PD15
GPIOF

PFO M PF1 PF2 PF3 PF4 [PF5 PF6 M PF7 M PF8 M PF9 M PF10 M PF11 M PF12 W PF13 M PF14 M PF15

checkbox in color (red/green) are configured as output. Checkbox in grey are inputs and can be checked/unchecked

Figure 4: User interface

Important Note:

e Both Qemu AND the graphical interface should be started. If a process is not
launched, the other will send messages until the message buffer is full, and then
will be freezed!. In that case, just relaunch the missing process to unfreeze.

e to exit gemu, you should type Ctrl+A x. When a debug session ends (by Qt
Creator), gemu should returns.

e the python user interface will be different from one lab to another. Just launch the
correct one (and only one!)

2.3 Debug with Qt Creator

Qt Creator should now connect to the GDB server. Chose Debug — Start Debugging
— Attach to running debug server... asin Fig[j]

You will have to configure (the first time only):
e the local port: 4242

e the local executable: the binary file (same as project name in the build dir, without
any extension)

e sclect Break at "main"

Start Debugger — Qt Creator x

Kit: Kit of Active Project: STM32 ~ | | Manage...
Server port: 4242 =
Local executable: /home/mik/univCloud/ECN/Coro/MICRO/TP/coro-micro-tp/code/build-blink-5TM32-Debug/lab1 Browse...

Command line arguments:

Working directory: Browse...

Run in terminal:

Break at "main™: v
Server start seript: Browse...
Override SysRoot: Browse...

Init commands:

Reset commands:

Debug information: Browse...

Normally, the running server is identified by the IP of the device in the kit and the server port selected above.
You can choose another communication channel here, such as a serial line or custom ip:port.

Override server channel: |For example, /dev/ttyso, COM1, 127.0.0.1:1234

Recent: lab1 (STM32) -

@ cancel Qok

Figure 5: Attach to a running debug server

The debugger should connect and show the code of the main() function. The debugger
will behave as on the real target, and you should see the led updated after each loop on
the user interface as in Figlf]

/* main function =*/
* int main(void) {
setup();
16 /* Infinite loop *fl
v while (1) {
e digitalToggle(GPIOB,3);
wait();

QEmu GPIO |

PBO " pPB1 " pPB2 B PB3 [PB4 [PBS PB6 [PBi

Figure 6: Debug session in progress. . .

	Hardware/Virtual Platform
	Hardware interactions
	Virtual Hardware interactions

	How to Start
	Design with Qt Creator
	Run on Qemu
	Debug with Qt Creator

