
Lab 4

Driver For The I/O Expander

MCP23S17 (SPI Interface)

M. Briday

December 14, 2020

1 Principle

This lab focuses on a standard communication interface (SPI) to interact with another
chip. The slave component is a MCP23S017 I/O Extender from Microchip that adds 2
8-bits GPIOs. The component has 2 versions, one with an i2c interface (MCP23017), and
the other with a spi interface (MCP23S17). We will use the spi version. The functional
diagram is in �gure 1.

GPB7
GPB6
GPB5
GPB4
GPB3
GPB2
GPB1
GPB0

Control

GPIO

RESET

INTA 16

Configuration/

8

Control
Registers

SPI
SI
SO

SCK

CS MCP23S17

GPA7
GPA6
GPA5
GPA4
GPA3
GPA2
GPA1
GPA0

INTB
Interrupt

GPIO

Serializer/
Deserializer

Logic

Figure 1: Functional Block Diagram of the MCP23S17.

1.1 Hardware Part

On the board, the component is the one with the board number, at the left of the tft.
The 2 ports are used as:

PORTA 8 leds (seen as EXP A on the board).

PORTB 4 DIP Switches (B0 to B3), and 4 push buttons (B4 to B7)

1

1.2 Software Part

This lab consists of writing a driver to control the component with high-level functions.
The API (Application Programming Interface) is a set of high level functions that are
available for an easy use of the component in the application. The lab implements these
functions, one after the other.

The API interface may be written in C++, or in C if you are not comfortable with the
object approach.

Hardware

Low Level SPI driver

MCU register access

Low level R/W on MCP23S17

void setupSPI();

void beginTransaction();

uint8_t transfer8(...);

Low level bit access on MCP23S17

void writeReg(...);

uint8_t readReg(...);

high level access on MCP23S17

void writeReg(...);

uint8_t readReg(...);

void setBitInReg(...);

void clearBitInReg(...);

void pinMode(...);

void digitalWrite(...);,
void attachInterrupt(...);

. . .

Figure 2: MCP23S17 Driver Architecture.

The architecture of the whole driver is de�ned in �gure 2. The spi low level driver is
given (see �les spi.c/h). The driver is organized with di�erent stacks, and arrows shows
the relationship between each stack (API functions).

2

2 Low Level Driver

2.1 Remote Register access

The component is seen as a set of registers that can be read/written using the SPI
interface. Microchip de�nes two modes for the register access (in IOCON.BANK) register
�eld, which only have an impact on register addresses. In this lab, we use only the default
mode 0. Registers are de�ned in the datasheet, table 1-2, p. 5.

In this section, basic functions to read/write to a remote register are de�ned (stack "Low
level R/W on MCP23S17" on �gure 2). The SPI communication frame is de�ned in
�gure 3, adapted from �gure 1-5 of the datasheet, p. 8.

0 1 0 0 A2
*

A1
*

A0
*

R/W A7 A6 A5 A4 A3 A2 A1 A 0

Device Opcode Register Address

CS

* Address pins are enabled/disabled via IOCON.HAEN.

D7

Figure 3: SPI Register Access. The A2-0 bits should be set to 0.

There must be an additionnal byte at the end of the frame: In write mode, this is the
data that should be written to the register, and in read mode, this is the answer from
the component.

The API of the low level driver consists in only 2 functions:

//write to a MCP register , using spi.

void writeReg(uint8_t reg , uint8_t val)

//read a MCP register , using spi.

uint8_t readReg(uint8_t reg)

Register addresses may be de�ned using a #define or an enum approach:

enum reg { //use mode 0 (default)

IODIRA = 0x0, // direction input(1), output (0)

IODIRB = 0x1,

IOPOLA = 0x2, // polarity (toggle) -> not used

//...

};

// or

// direction input(1), output (0)

#define IODIRA 0x0

#define IODIRB 0x1

#define IOPOLA 0x2

//...

3

The R/W functions have to set the Chip Select, send a frame of 3 bytes (2W and 1R, or
3W), and unset the chip select.

Question 1 Write the two low level functions to access to a remote registers.

2.2 Remote register access: bit access

In this section, we add 2 useful functions to update only one bit of a remote register.
This is the stack "Low level bit access on MCP23S17" of the driver in �gure 2.

The functions de�nitions are:

void setBitInReg(uint8_t reg , uint8_t bitNum);

void clearBitInReg(uint8_t reg , uint8_t bitNum);

where reg is the remote register address de�ned in the previous section, and bitNum the
bit number that should be updated.

These two functions do not access directly to the spi driver, but use the functions de�ned
in the previous section.

Question 2 Write these two functions to modify a single bit of a remote registers.

3 High Level Driver

3.1 Output mode

The High Level driver stack can now be de�ned to allows an easy access to the device.
The interface may be in C language, with API functions:

enum port {PORTA=0, PORTB =1};

enum mode {OUTPUT=0,INPUT=1, INPUT_PULLUP =2};

enum itType {RISING , FALLING , BOTH};

// configure a pin

// - port is PORTA or PORTB

// - numBit is the pin number (0 to 15)

// - mode is in DISABLE , OUTPUT , INPUT , ...)

void mcpPinMode(port p, unsigned char bitNum , mode m);

With an object oriented approach, the interface would be for instance:

class mcp23s17 {

public:

enum port {PORTA=0, PORTB =1};

enum mode {OUTPUT=0,INPUT=1, INPUT_PULLUP =2};

enum itType {RISING , FALLING , BOTH};

private:

4

enum reg { //use mode 0 (default)

IODIRA = 0x0, // direction input(1), output (0)

IODIRB = 0x1,

//...

};

public:

mcp23s17 ();

void begin ();

// configure a pin

// - port is PORTA or PORTB

// - numBit is the pin number (0 to 7)

// - mode is in DISABLE , OUTPUT , INPUT , ...)

int pinMode(port p,

unsigned char bitNum ,

mode m);

...

};

Then, a single object is de�ned (in the C++ �le), and declared as extern in the header
�le:

extern mcp23s17 ioExt;

In the application, it can be used like this: ioExt.pinMode(...);

Question 3 De�ne the functions of the output mode of the ports. This means:

� pinMode() that con�gures a pin as output/input/input pullup;

� digitalWrite() that controls a single pin:

// high state if 'value' is different from 0

// low state if 'value' is 0.

void digitalWrite(port p,

unsigned char bitNum ,

bool value);

3.2 First application

To test our driver, we want to make a single chaser with the leds of MCP GPIOA.

Question 4 Write this single chaser, using your driver and a timer.

3.3 Input Mode

The input mode is now easy to write, as the con�guration function is already written
(pinMode()).

5

Question 5 write the input read function. We don't provide a digitalRead() but a
function that reads the whole port:

//read the whole port.

uint8_t readBits(port p);

Question 6 update the application (chaser) so that Dip Switch 0 (PORTB.0) de�nes the
direction of the chaser.
Note: The switch needs an input pullup con�guration.

4 Extension: Interrupts

4.1 Driver

The spi connection does not handle any interrupt management, but 2 external lines are
provided (see �gure 1), one for each port. The �rst line INTA is not connected (only leds
on the port), but the line INTB is connected to the MCU (PA9).

The driver is organised around the interrupt service routine, and one function to associate
an interrupt (on one pin) to a callback function. The callback function is a function with
no argument1:

typedef void (* mcpCallBack)();

The function that associates an interrupt on one pin, and its corresponding callback is:

// attach an interrupt to an input pin (port/bitNum)

void attachInterrupt(port p, uint8_t bitNum ,

itType type ,mcpCallBack callback);

Question 7 Con�gure the interrupt on external line EXT9. The handler, shared with
other lines, is EXTI9_5_IRQHandler().

A tabular of callback may be de�ned in the driver, for an easy access.

In the interrupt routine, the register INTCAPB should be read to determine the line that
generates the interrupt, and call the appropriate callback.

Question 8 Provide an implementation of the attachInterrupt function so that con-
�gure a line, and the interrupt handler that calls the callback function.

4.2 Application

Question 9 Use your new interrupt driver, so that the chaser direction is now toggled
each time button 4 (PORTB.4) is pushed.

1A function pointer is no more than a pointer points to the �rst instruction of a function, i.e instead

of storing the address of a data, it stores the address of the function.A remainder of the use of function

pointers: https://www.zentut.com/c-tutorial/c-function-pointer/

6

https://www.zentut.com/c-tutorial/c-function-pointer/

	Principle
	Hardware Part
	Software Part

	Low Level Driver
	Remote Register access
	Remote register access: bit access

	High Level Driver
	Output mode
	First application
	Input Mode

	Extension: Interrupts
	Driver
	Application

